1、例例1 作圆,使它和已知三角形的各边都相切作圆,使它和已知三角形的各边都相切(1)作圆的关键是什么)作圆的关键是什么?提出以下几个问题进行讨论:提出以下几个问题进行讨论:(2)假设)假设 I是所求作的圆,是所求作的圆,I和三和三角形三边都相切,圆心角形三边都相切,圆心I应满足什么应满足什么条件条件?(3 3)这样的点)这样的点I应在什么位置应在什么位置?(4 4)圆心)圆心I确定后半径如何找?确定后半径如何找?结论:和三角形的各边都相切的圆可以作一个且只可以作结论:和三角形的各边都相切的圆可以作一个且只可以作出一个出一个ABCIMNDABCM例例1 作圆,使它和已知三角形的各边都相切作圆,使它
2、和已知三角形的各边都相切已知:已知:ABC(如图)(如图)求作:和求作:和ABC的各边都相切的圆的各边都相切的圆作法:作法:1、作、作ABC、ACB的平分线的平分线BM和和CN,交点为,交点为I.2、过点、过点I作作IDBC,垂足为,垂足为D.3、以、以I为圆心,为圆心,ID为半径作为半径作 I,I就是所求的圆就是所求的圆.N ID 1、如图如图1,ABC是是 O的的 三角形。三角形。O是是ABC的的 圆,点圆,点O叫叫ABC的的 ,它是三角形它是三角形 的交点。的交点。外接外接内接内接外心外心三边中垂线三边中垂线13、如图、如图2,DEF是是 I的的 三角形,三角形,I是是DEF的的 圆,点
3、圆,点I是是 DEF的的 心,它是三角心,它是三角形形 的交点。的交点。2、定义:和三角形各边都相切的圆、定义:和三角形各边都相切的圆叫做叫做 ,内切圆,内切圆的圆心叫做三角形的的圆心叫做三角形的 ,这,这个三角形叫做个三角形叫做 。ABCO图图1IDEF图2三角形的内切圆三角形的内切圆内心内心圆的外切三角形圆的外切三角形外切外切内切内切内内角平分线角平分线三角形内心的性质三角形内心的性质:1、三角形的内心到三角形各边的距离相等;、三角形的内心到三角形各边的距离相等;2、三角形的内心在三角形的角平分线上;、三角形的内心在三角形的角平分线上;1、三角形的外心到三角形各个顶点的距离相等;、三角形的
4、外心到三角形各个顶点的距离相等;2、三角形的外心在三角形三边的垂直平分线上;、三角形的外心在三角形三边的垂直平分线上;三角形外心的性质三角形外心的性质:CABIDEFO名称名称确定确定方法方法图形图形性质性质外心外心内心内心ABCOABCO三 角 形三 角 形三 边 中三 边 中垂 线 的垂 线 的交点交点三角形三角形三条角三条角平分线平分线的交点的交点(三 角(三 角形 外 接形 外 接圆 的 圆圆 的 圆心)心)(三角(三角形内切形内切圆的圆圆的圆心)心)1.OA=OB=OC;2.外心外心不一定在三角形的内不一定在三角形的内部部1.到三边的距离相等;到三边的距离相等;2.OA、OB、OC分
5、别平分分别平分BAC、ABC、ACB;3.内心在三角形内部内心在三角形内部 判断题:判断题:1、三角形的内心到三角形各个顶点的距离相等(、三角形的内心到三角形各个顶点的距离相等()2、三角形的外心到三角形各边的距离相等、三角形的外心到三角形各边的距离相等()3、等边三角形的内心和外心重合;、等边三角形的内心和外心重合;()4、三角形的内心一定在三角形的内部(、三角形的内心一定在三角形的内部()5、菱形一定有内切圆(、菱形一定有内切圆()6、矩形一定有内切圆(、矩形一定有内切圆()错错错错对对对对 错错 对对定义:和多边形各边都相切的圆定义:和多边形各边都相切的圆叫做叫做 ,这个,这个多边形叫做
6、多边形叫做 。多边形的内切多边形的内切 圆圆圆的外切多边形圆的外切多边形内切内切外切外切如上图,四边形如上图,四边形DEFG是是 O的的 四四 边形,边形,O是四边形是四边形DEFG的的 圆,圆,DEFG.O 例例2 如图,在如图,在ABC中,点中,点O是内心,是内心,(1)若)若ABC=50,ACB=70,求,求BOC的度数的度数ABCO(2 2)若)若A=80 A=80,则,则BOC=BOC=度。度。(3 3)若)若BOC=100 BOC=100,则,则A=A=度。度。解解(1)点点O是是ABC的内心,的内心,OBC=OBA=ABC=25 同理同理 OCB=OCA=ACB=35 BOC=1
7、80 (OBC OCB)=180 60=120 13020(4)试探索:)试探索:A与与BOC之间存在怎样之间存在怎样的数量关系?请说明理由。的数量关系?请说明理由。理由:理由:点点O是是ABC的内心,的内心,OBC=ABC,OCB=ACB OBC OCB=(ABC+ACB)=(180 A)=90 A在在ABC中,中,BOC=180(OBC OCB)=180(90 A)=90+AABCO答:答:BOC=90 +A例例2:如图,设:如图,设ABC的边的边BC=a,CA=b,AB=c,s=(a+b+c)/2,内切圆,内切圆O和各边分别相切于和各边分别相切于D,E,F。求证:求证:AD=AF=s-a
8、,BE=BD=s-b,CF=CE=s-c。ABCDEFO(三)、特殊三角形外接圆、内切圆半径的求法:(三)、特殊三角形外接圆、内切圆半径的求法:R=c2 r=a+b-c2ABCOIabc直角三角形外接圆、内切圆半径的求法直角三角形外接圆、内切圆半径的求法 课堂小结:课堂小结:1 1、本节课从实际问题入手,探索得出三角形内切圆的作本节课从实际问题入手,探索得出三角形内切圆的作法法.2 2、通过类比三角形的外接圆与圆的内接三角形概念得出、通过类比三角形的外接圆与圆的内接三角形概念得出三角形的内切圆、圆的外切三角形概念,并介绍了多边形的三角形的内切圆、圆的外切三角形概念,并介绍了多边形的内切圆、圆的外切多边形的概念。内切圆、圆的外切多边形的概念。3 3、学习、学习 时要明确时要明确“接接”和和“切切”的含义、弄清的含义、弄清“内心内心”与与“外心外心”的区别,的区别,4 4、利用三角形内心的性质解题时,要注意整体思想的运、利用三角形内心的性质解题时,要注意整体思想的运用,在解决实际问题时,要注意把实际问题转化为数学问题。用,在解决实际问题时,要注意把实际问题转化为数学问题。谢谢谢谢,再见再见 !20032003年年1212月月1717日日