ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:1.81MB ,
文档编号:531361      下载积分:5 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-531361.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(cbx170117)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中化学选修3:六方最密堆积中正八面体空隙和正四面体空隙.doc)为本站会员(cbx170117)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中化学选修3:六方最密堆积中正八面体空隙和正四面体空隙.doc

1、高中高中化学化学选修选修 3 3:六方最密堆积中正八面体空隙六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标和正四面体空隙中心的分数坐标 等径圆球紧密排列形成 密置层,如图所示。 在密置层内,每个圆球 周围有六个球与它相切。相 切的每三个球又围出一个三 角形空隙。仔细观察这些三 角形空隙,一排尖向上,接 着下面一排尖向下,交替排 列。而每个圆球与它周围的六个球围出的六个三角形空隙中,有三个 尖向上,另外三个 尖向下。如图所 示,我们在这里将 尖向上的三角形空 隙记为 B,尖向下 的三角形空隙记为 C。第二密置层的 球放在 B 之上,第 三密置层的球投影 在 C 中,三层完成 一个周期。

2、这样的 最密堆积方式叫做立方 最密堆积(ccp,记为 A1 型),形成面心立方 晶胞。 若第三密置层的球投 影与第一密置层的球重 合,两层完成一个周 期。这样的最密堆积方 式叫做六方最密堆积 (hcp,记为 A3 型), 形成六方晶胞,如图所 示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空 隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应, 它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙 的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于 正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体 的中心。 在这两种最密堆积方式中,每个 球与同

3、一密置层的六个球相切,同时 与上一层的三个球和下一层的三个球 相切,即每个球与周围十二个球相切 (配位数为 12)。中心这个球与周围 的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分 之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一, 即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个 正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的 球数是六个六分之一,即一个。总之,这两种最密堆积中,球数 : 正 八面体空隙数 : 正四面体空隙数 = 1:1:2 。 面心立方最密堆积(ccp, A1 型)中正八面体空隙和正四面体空 隙的问题比较简单、直观。下面我们

4、集中讨论六方最密堆积(hcp,A3 型)中正八面体空隙和正四面体空隙中心的分数坐标。 在六方最密堆积中画出一个六方晶胞,如下面两幅图所示。 平均每个六方晶胞中有两个正八面体空隙,如下面两幅图所示。 空隙中心的分数坐标分别为:(2/3,1/3,1/4),(2/3,1/3,3/4)。 对于正四面体空隙,存在这样一个问题,即正四面体的中心到它 的底面的距离是它的高的多少倍? 解法一(分体积法):以正四面体的 中心 O 为顶点,以正四面体的四个面为 底面将正四面体平均分为四个等体积的小 三棱锥,小三棱锥的高为 OH,则有: 4 V 33 4 S AHS OH AHOH 即正四面体的中心到底面的距离是它

5、的高的四分之一。 解法二(立方体法): 将正四面体的四个顶点放在立方体相隔的四个顶点。设立方体的 边长为 1,则正四面体的边长为2,正四面体的高为 62 3 2 33 。由 于立方体的体对角线为3,所以正四面体的中心(即立方体的中心) 到它的底面的距离与它的高之比为: 2 332 3 :1:4 323 解法三(外接球法):如图,设正四 面体的边长为 1,则 2 2336 , A 3233 6 2 A21 3 6 4 666 3412 1 3 BGG rGr r OG OG r 解得 即正四面体的中心到底面的距离是它的 高的四分之一。 解法四(正弦定理法): 如图,正四面体中心到两个顶点之间 的

6、夹角为 109.47 ,等腰三角形的另两个角 为 35.27 。根据正弦定理即可求解。 下面我们来找出六方最密堆积一个晶胞中的所有正四面体。 六方晶胞内中间层的一个球与上面三个球和下面三个球各围成一 个正四面体空隙,空隙中心的分数坐标分别是:(1/3,2/3,1/8), (1/3,2/3,7/8)。 另外在每个棱上,晶胞顶点的八个球分别与中间层的 球围成正四面体空隙,这些空隙平均只有四分之一在这 个晶胞内,八个四分之一共为两个。空隙中心的分数坐 标分别是:(0,0,3/8),(0,0,5/8)。 四个坐标说明正四面体空隙共有四个。 用体积模型示意图来看各种空隙也是很有意思的。 请看左图。在六方硫化锌中,硫离子呈 六方密堆积,锌离子填入空隙。锌离子填入 的是什么空隙? (正四面体还是 正八面体?)是 否填满了所有的空隙?将结果与立方硫化锌的情况作对比,看有哪些 相似与不同。估计锌离子与硫离子的半径比。查阅锌离子与硫离子的 半径数据,说明硫离子是不是最密堆积。

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|