ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:863.99KB ,
文档编号:5407153      下载积分:2 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5407153.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(523738114@qq.com)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(2023年中考数学专题复习:二次函数综合压轴题(角度问题).docx)为本站会员(523738114@qq.com)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

2023年中考数学专题复习:二次函数综合压轴题(角度问题).docx

1、2023年中考数学专题复习:二次函数综合压轴题(角度问题)1如图,二次函数(是常数,且)的图象与轴交A,两点(点A在点的左侧),与轴交于点,顶点为,对称轴与线段交于点,与轴交于点,连接,(1)若求直线的表达式;求证:;(2)若二次函数(是常数,且)在第四象限的图象上,始终存在一点,使得,求出的取值范围2如图,在平面直角坐标系中,点为坐标原点,抛物线的顶点是,点恰好在抛物线上,与抛物线的对称轴交于点(1)求抛物线的解析式;(2)是线段上一动点,且不与点,重合,过点作平行于轴的直线,与的边分别交于,两点,将以直线为对称轴翻折,得到,设点的纵坐标为当点在的内部时,求的取值范围;(3)点在抛物线上,且

2、,求点的横坐标3如图,抛物线与x轴交于A,B两点,点在抛物线上.轴于点D.(1)请直接写出抛物线的解析式;(2)连接,E为抛物线上一点,当时,求点E的坐标;(3)直线:交抛物线于另一点F,交直线于点P,过F作直线于点T,当时,求k的值.4如图,抛物线与x轴交于点、两点,与y轴交点C,连接,顶点为M(1)求抛物线的解析式及顶点M的坐标;(2)若D是直线上方抛物线上一动点,连接交于点E,当的值最大时,求点D的坐标;(3)已知点G是抛物线上的一点,连接,若,求点G的坐标5如图,对称轴为直线的抛物线与x轴交于A、B两点,与y轴交于C点,且(1)求抛物线的解析式;(2)抛物线顶点为D,直线交y轴于E点;

3、设点P为线段上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求面积的最大值;在线段上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由6如图,在平面直角坐标系中,二次函数的图象与x轴分别交于点、,与y轴交于点C(1)求该二次函数的表达式;(2)若点P是该二次函数图象上的动点,且P在直线的上方,如图1,当平分时,求点P的坐标;如图2,连接交BC于E点,设,求k的最大值7已知如图,抛物线与坐标轴分别交于点,(1)求抛物线解析式;(2)点是抛物线第三象限部分上的一点,若满足,求点的坐标;(3)若是轴上一点,在抛物线上是否存在点,使得以点、为顶点的四边形是平行四边形

4、,若存在,请写出点的坐标,若不存在,请说明理由;8如图,已知抛物线与x轴交于,两点,与y轴交于点C且有(1)求抛物线解析式;(2)点P在抛物线的对称轴上,使得是以为底的等腰三角形,求出点P的坐标;(3)在(2)的条件下,若点Q在抛物线的对称轴上,并且有,直接写出点Q的坐标9如图,在平面直角坐标系中,二次函数的图像与轴交于,两点(点在点的左侧),顶点为,经过点的直线与轴交于点,与抛物线的另一个交点为(1)直接写出点的坐标、点的坐标(2)如图(1),若顶点的坐标为,连接、,请求出二次函数及一次函数的解析式,并求出四边形的面积;(3)如图(2),连接,当为何值时直线与轴的夹角为?(4)如图(3),点

5、是直线上方的抛物线上的一点,若的面积的最大值为时,请直接写出此时点的坐标10如图,直线与x轴、y轴分别交于B、C两点,抛物线经过点B、C,与x轴另一交点为A,顶点为D(1)求抛物线的解析式;(2)在第四象限的抛物线上是否存在一点M,使的面积为?若存在,求出M点坐标;若不存在,请说明理由(3)在抛物线的对称轴上是否存在一点P,使得?若存在,求出P点坐标;若不存在,请说明理由11如图,以的边和边上高所在直线建立平面直角坐标系,已知,抛物线经过A,B,C三点(1)求抛物线解析式(2)点G是x轴上一动点,过点G作轴交抛物线于点H,抛物线上有一点Q,若以C,G,Q,H为顶点的四边形为平行四边形,求点G的

6、坐标(3)点P是抛物线上的一点,当时,求点P的坐标12如图,抛物线与y轴交于点C,与x轴交于A,B两点,点A在点B左侧点A的坐标为(1)求抛物线的解析式;(2)在直线下方的抛物线上是否存在一点P,使得的面积等于面积的三分之二?若存在,求出此时的长;若不存在,请说明理由(3)将直线绕着点C旋转得到直线,直线与抛物线的交点为M(异于点C),求M点坐标13如图,二次函数的图象经过点,直线与轴、轴交于点D,E(1)求该二次函数的解析式(2)点M为该二次函数图象上一动点若点M在图象上的B,C两点之间,求的面积的最大值若,求点M的坐标14如图,直线与x轴、y轴分别相交于B、C,经过B、C两点的抛物线与x轴

7、另一交点为A,顶点为P,且对称轴是直线,(1)求抛物线解析式;(2)连接,求(3)在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与相似,若存在,请求出Q点坐标;若不存在,说明理由15如图,已知抛物线的图象与x轴交于A,B两点,与y轴交于点C,过点B的直线l与抛物线交于点D,与y轴交于点F该抛物线的对称轴交直线l于点E,与x轴交于点G,且(1)求该抛物线的解析式;(2)点M为抛物线上一点,求点M的坐标;(3)已知点P为抛物线对称轴上的点,满足在直线上存在唯一的点Q,使得,求点P的坐标16已知:抛物线与x轴相交于A、B两点,与y轴的交于点(1)求抛物线的解析式的一般式;(2)若抛物线第一象

8、限上有一点P,满足,求P点坐标;(3)直线与抛物线交于E、F两点,当点B到直线l的距离最大时,求的面积17如图,在平面直角坐标系中,抛物线过点,x轴上有一动点,过点P且垂直于x轴的直线与直线BC及抛物线分别交于点D,E连接(1)求抛物线的解析式(2)点P在线段上运动时(不与点O,B重合)当时,求t的值(3)当点P在x轴上自由运动时,是否存在点P,使?若存在,请直接写出点P的坐标;若不存在,请说明理由18已知点C为抛物线的顶点(1)直接写出点C的坐标为;(2)若抛物线经过点直接写出抛物线解析式为:;如图1,点B,以为底的等腰交抛物线于点P,将点P绕原点O顺时针旋转到,求的坐标;(3)如图2,过抛

9、物线上一点M作直线l平行于y轴,直线交抛物线另一点于E,交直线l于点D,过M作轴,交抛物线于另一点N,过E作于点F若点M的横坐标为,试探究与之间的数量关系并说明理由参考答案:1(1),见解析(2)2(1)(2)当点在的内部时,(3)点的横坐标为或23(1)(2)或(3)或4(1)抛物线的解析式为,M的坐标为(2)(3)点G的坐标为或5(1)(2)1;存在,6(1)(2);7(1)(2)(3)存在,点的坐标为或或8(1)(2)(3)Q点坐标为或9(1)(2),(3)(4)10(1)见解析;(2)存在,;(3)存在,或11(1)(2)G的坐标为或(3)当时,点P的坐标为(4,5)或12(1)抛物线的解析式为(2)不存在这样的点P,理由见解析(3)M点坐标是或13(1)该二次函数的解析式是;(2)的面积的最大值为;点M的坐标为或14(1)(2)(3)存在,Q1(0,0),Q2(,0)15(1)(2)M点坐标为或(3)P点坐标为或或或16(1)(2)或(3)1017(1)(2)2(3))或18(1)(2);的坐标为;(3)12

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|