ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:1.57MB ,
文档编号:5508681      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5508681.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文((完整版)初中圆知识点总结与练习.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

(完整版)初中圆知识点总结与练习.doc

1、圆圆的认识1圆的定义OAr(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,如右图所示。(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。2圆的有关概念(1)弦:连结圆上任意两点的线段。(如右图中的CD)。BOA(2)直径:经过圆心的弦(如右图中的AB)。直径等于半径的2倍。DC(3)弧:圆上任意两点间的部分叫做圆弧。(如右图中的、)其中大于半圆的弧叫做优弧,如,小于半圆的弧叫做劣弧。(4)圆心角:如右图中C

2、OD就是圆心角。3与圆相关的角(1)与圆相关的角的定义圆心角:顶点在圆心的角叫做圆心角圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。(2)与圆相关的角的性质圆心角的度数等于它所对的弦的度数;一条弧所对的圆周角等于它所对的圆心角的一半;同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角相等;弦切角等于它所夹的弧所对的圆周角;两个弦切角所夹的弧相等,那么这两个弦切角也相等;圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。4圆心角、弧、弦、弦心距之间的关系。(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对

3、的弦的弦心距相等。(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等【例1】 下面四个命题中正确的一个是( ) A过弦的中点的直线平分弦所对的弧 B过弦的中点的直线必过圆心 C弦所对的两条弧的中点连线垂直平分弦,且过圆心 D弦的垂线平分弦所对的弧【答案】C与圆有关的位置关系1点与圆的位置关系如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外(2)点在圆上(3)点在圆内2直线和圆的位置关系设r为圆的半径,d为圆心到直线的距离(1)直线和圆相离,直线与圆没有交点;(2)直线和圆相切,直线与圆有唯一交点;(3)直

4、线和圆相交,直线与圆有两个交点。3两圆的位置关系设R、r为两圆的半径,d为圆心距(1)两圆外离;(2)两圆外切;(3)两圆相交;(4)两圆内切;(5)两圆内含。(注意:如果为,则两圆为同心圆。)4. 切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。5. 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:、是的两条

5、切线 平分【例2】 已知O的半径为1,点P到圆心O的距离为d,若关于x的方程x22xd=0有实根,则点P( )A在O的内部B在O的外部C在O上D在O上或O的内部【答案】D【例3】 已知:如图,PA,PB分别与O相切于A,B两点求证:OP垂直平分线段AB【答案】略【例4】 已知:如图,PA切O于A点,POAC,BC是O的直径请问:直线PB是否与O相切?说明你的理由【答案】直线PB与O相切提示:连结OA,证PAOPBO【例5】已知:如图,O1与O2外切于A点,直线l与O1、O2分别切于B,C点,若O1的半径r1=2cm,O2的半径r2=3cm求BC的长【答案】提示:分别连结O1B,O1O2,O2C

6、【例6】如图,点A,B在直线MN上,AB=11cm,A,B的半径均为1cmA以每秒2cm的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1t(t0)(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?【答案】(1)当0t5.5时,d112t;当t5.5时,d2t11(2) 第一次外切,t3;第一次内切,第二次内切,t11;第二次外切,t13垂径定理及推论垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分

7、线经过圆心,并且平分弦所对的两条弧;推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧【例7】在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是_cm.【答案】 【例8】如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,ADBC于D,求证:AD=BF.【答案】提示:连接OF,证明 是全等三角形。圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论

8、2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或【例9】已知:如图,AB是O的直径,弦CDAB于E,ACD=30,AE=2cm求DB【答案】【例10】已知:如图,O的直径AE=10cm,B=EAC求AC的长 【答案】提示:连结CE不难得出与圆有关的计算1 圆周长:2 弧长:;3 圆面积:;4 扇形面积:;【例11】如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为(

9、 ) ABCD【答案】D 【例12】已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点试比较与的长【答案】的长等于的长提示:连结O2D圆幂定理1.相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比 例中项。即:在中,直径, 2. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 3. 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中

10、,、是割线 【例13】如图,P是O外一点,PC切O于点C,PAB是O的割线,交O于A、B两点,如果PA:PB1:4,PC12cm,O的半径为10cm,则圆心O到AB的距离是_【答案】9正多边形与圆1.正三角形 在中是正三角形,有关计算在中进行:;2.正四边形同理,四边形的有关计算在中进行,:3.正六边形同理,六边形的有关计算在中进行,.【例13】已知正多边形的边长为a与外接圆半径R之间满足,则这个多边形是( ) A. 正三边形B. 正四边形C. 正五边形D. 正六边形【答案】C 提示:正多边形的边数越多,则边长越小,而有 因为,所以 则,是正五边形,应选C。课后练习题【例1】若P为半径长是6c

11、m的O内一点,OP2cm,则过P点的最短的弦长为( )A12cmBCD【答案】D【例2】若O的半径长是4cm,圆外一点A与O上各点的最远距离是12cm,则自A点所引O的切线长为( )A16cmBCD【答案】B【例3】O中,AOB100,若C是上一点,则ACB等于( )A80B100C120D130【答案】A【例4】三角形的外心是( )A三条中线的交点B三个内角的角平分线的交点C三条边的垂直平分线的交点D三条高的交点【答案】C【例5】如图,A是半径为2的O外的一点,OA4,AB是O的切线,点B是切点,弦BCOA,则的长为( )7题图ABCD【答案】A【例6】如图,图中的五个半圆,邻近的两半圆相切

12、,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿,路线爬行,乙虫沿路线爬行,则下列结论正确的是( )8题图A甲先到B点B乙先到B点C甲、乙同时到B点D无法确定【答案】C【例7】如图,同心圆半径分别为2和1,AOB120,则阴影部分的面积为( )9题图ABC2D4【答案】C【例8】如图,在O中,AB为O的直径,弦CDAB,AOC60,则B_【答案】30【例9】如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为_【答案】【例10】已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB12cm求两个圆之间的圆环面积【答案】36?cm2提示:连接OC,OA.【例11】如

13、图,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?【答案】设三个圆的圆心为O1、O2、O3,连结O1O2、O2O3、O3O1,可得边长为4 cm的正O1O2O3,则正O1O2O3外接圆的半径为 cm,所以大圆的半径为+2=【例12】如图,在ABC中,C=90,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N (1)求证:BABM=BCBN;(2)如果CM是O的切线,N为OC的中点,当AC=3时,求AB的值【答案】(1)证明:连接MN则BMN=90=ACB,ACBNMB,ABBM=BCBN (2)解:连接OM,则OMC=90,N为OC中点,MN=ON=OM,MON=60,OM=OB,B=MON=30ACB=90,AB=2AC=23=6

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|