1、第十八章 平行四边形 知识点总结1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角和等于360.2多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180;(2)任意多边形的外角和等于360.3平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6. 矩形的判定:四边形ABCD是矩形. 7菱形的性质:因为ABCD是菱形8菱形的判定:四边形四边形ABCD是菱形.9正方形的性质:因为ABCD是正方形 (1) (2)(3) 10正方形的判定:四边形ABCD是正方形. (3)ABCD是矩形又AD=AB 四边形AB
2、CD是正方形11三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.几种特殊四边形的有关性质(1)矩形: 边:对边平行且相等; 角:四个角都是直角;对角线:对角线互相平分且相等; 对称性:轴对称图形(对边中点连线所在直线,2条)(2) 菱形:边:对边平行,且四条边都相等; 角:对角相等、邻角互补; 对角线:对角线互相垂直平分且每条对角线平分每组对角; 对称性:轴对称图形(对角线所在直线,2条)(3) 正方形:边:四条边都相等; 角:四角相等; 对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; 对称性:轴对称图形(4条)几种特殊四边形的判定方法(1)矩形的判定:满足下列条件
3、之一的四边形是矩形有一个角是直角的平行四边形; 对角线相等的平行四边形; 四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形有一组邻边相等的平行四边形; 对角线互相垂直的平行四边形; 四条边都相等(3)正方形的判定:满足下列条件之一的四边形是正方形 有一组邻边相等 且有一个直角 的平行四边形 有一组邻边相等 的矩形; 对角线互相垂直 的矩形 有一个角是直角 的菱形 对角线相等 的菱形;几种特殊四边形的面积问题 设矩形ABCD的两邻边长分别为a,b,则S矩形=ab 设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形= 设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形= 设梯形ABCD的上底为a,下底为b,高为h,则S梯形=