ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:377.50KB ,
文档编号:5516309      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5516309.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文((完整版)第一章解三角形章末测试题.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

(完整版)第一章解三角形章末测试题.doc

1、第一章 解三角形一、选择题1已知A,B两地的距离为10 km,B,C两地的距离为20 km,现测得ABC120,则A,C两地的距离为( )A10 kmB10kmC10kmD10km2在ABC中,若,则ABC是( )A等腰三角形B等边三角形C直角三角形D等腰直角三角形3三角形三边长为a,b,c,且满足关系式(abc)(abc)3ab,则c边的对角等于( )A15B45C60D1204在ABC中,三个内角A,B,C所对的边分别为a,b,c,且abc12,则sin Asin Bsin C( )A21B21C12D125如果A1B1C1的三个内角的余弦值分别等于A2B2C2的三个内角的正弦值,则( )

2、AA1B1C1和A2B2C2都是锐角三角形BA1B1C1和A2B2C2都是钝角三角形CA1B1C1是钝角三角形,A2B2C2是锐角三角形DA1B1C1是锐角三角形,A2B2C2是钝角三角形6在ABC中,a2,b2,B45,则A为( )A30或150B60C60或120D307在ABC中,关于x的方程(1x2)sin A2xsin B(1x2)sin C0有两个不等的实根,则A为( )A锐角B直角C钝角D不存在8在ABC中,AB3,BC,AC4,则边AC上的高为( )ABCD39在ABC中,c2,sin Asin B,则ABC 一定是( )A等边三角形B等腰三角形C直角三角形D等腰三角形或直角三

3、角形10根据下列条件解三角形:B30,a14,b7;B60,a10,b9那么,下面判断正确的是( )A只有一解,也只有一解B有两解,也有两解C有两解,只有一解D只有一解,有两解二、填空题11在ABC中,a,b分别是A和B所对的边,若a,b1,B30,则A的值是 12在ABC中,已知sin Bsin Ccos2,则此三角形是_三角形13已知a,b,c是ABC中A,B,C的对边,S是ABC的面积若a4,b5,S5,求c的长度 14ABC中,ab10,而cos C是方程2x23x20的一个根,求ABC周长的最小值 15在ABC中,A,B,C的对边分别为a,b,c,且满足sin Asin Bsin C

4、256若ABC 的面积为,则ABC的周长为_16在ABC中,A最大,C最小,且A2C,ac2b,求此三角形三边之比为 三、解答题17在ABC中,已知A30,a,b分别为A,B的对边,且a4b,解此三角形(第18题)18如图所示,在斜度一定的山坡上的一点A测得山顶上一建筑物顶端C对于山坡的斜度为15,向山顶前进100米后到达点B,又从点B测得斜度为45,建筑物的高CD为50米求此山对于地平面的倾斜角q19在ABC中,A,B,C的对边分别为a,b,c,若bcos C(2ac)cos B,()求B的大小;()若b,ac4,求ABC的面积20在ABC中,角A,B,C的对边分别为a,b,c,求证:参考答

5、案一、选择题1D解析:AC2AB2BC22ABBCcosABC10220221020cos 120700AC102B解析:由及正弦定理,得,由2倍角的正弦公式得,ABC3C解析:由(abc)(abc)3ab,得 a2b2c2ab cos C故C604D解析:由正弦定理可得abcsin Asin Bsin C125D解析:A1B1C1的三个内角的余弦值均大于0,则A1B1C1是锐角三角形若A2B2C2不是钝角三角形,由,得,那么,A2B2C2(A1B1C1),与A2B2C2矛盾所以A2B2C2是钝角三角形6C解析:由,得sin A,而ba, 有两解,即A60或A1207A解析:由方程可得(sin

6、 Asin C)x22xsin Bsin Asin C0 方程有两个不等的实根, 4sin2 B4(sin2 Asin2 C)0由正弦定理,代入不等式中得 b2a2c20,再由余弦定理,有2ac cos Ab2c2a20 0A908B解析:由余弦定理得cos A,从而sin A,则AC边上的高BD9A解析:由c2a3b3c3(abc)c2a3b3c2(ab)0(ab)(a2b2abc2)0 ab0, a2b2c2ab0 (1)由余弦定理(1)式可化为a2b2(a2b22abcos C)ab0,得cos C,C60由正弦定理,得sin A,sin B, sin Asin B, 1,abc2将ab

7、c2代入(1)式得,a2b22ab0,即(ab)20,abABC是等边三角形10D解析:由正弦定理得sin A,中sin A1,中sin A分析后可知有一解,A90;有两解,A可为锐角或钝角二、填空题1160或120解析:由正弦定理计算可得sin A,A60或12012等腰解析:由已知得2sin Bsin C1cos A1cos(BC),即2sin Bsin C1(cos Bcos Csin Bsin C), cos(BC)1,得BC, 此三角形是等腰三角形13或解: Sabsin C, sin C,于是C60或C120又c2a2b22abcos C,当C60时,c2a2b2ab,c;当C12

8、0时,c2a2b2ab,c c的长度为或14105解析:由余弦定理可得c2a2b22abcos C,然后运用函数思想加以处理 2x23x20, x12,x2又cos C是方程2x23x20的一个根, cos C由余弦定理可得c2a2b22ab()(ab)2ab,则c2100a(10a)(a5)275,当a5时,c最小,且c5,此时abc555105, ABC周长的最小值为1051513解析:由正弦定理及sin Asin Bsin C256,可得abc256,于是可设a2k,b5k,c6k(k0),由余弦定理可得cos B, sin B由面积公式SABCac sin B,得(2k)(6k), k

9、1,ABC的周长为2k5k6k13k13本题也可由三角形面积(海伦公式)得,即k2, k1 abc13k1316654解析:本例主要考查正、余弦定理的综合应用由正弦定理得2cos C,即cos C,由余弦定理cos C ac2b, cos C, 整理得2a25ac3c20解得ac或acA2C, ac不成立,ac b, abccc654故此三角形三边之比为654三、解答题17b4,c8,C90,B60或b4,c4,C30,B120解:由正弦定理知sin B,b4B60或B120C90或C30c8或c4(第18题)18分析:设山对于地平面的倾斜角EADq,这样可在ABC中利用正弦定理求出BC;再在

10、BCD中,利用正弦定理得到关于q 的三角函数等式,进而解出q 角 解:在ABC中,BAC15,AB100米,ACB451530根据正弦定理有, BC又在BCD中, CD50,BC,CBD45,CDB90q ,根据正弦定理有解得cos q 1, q 42.94 山对于地平面的倾斜角约为42.9419解:()由已知及正弦定理可得sin Bcos C2sin Acos Bcos Bsin C, 2sin Acos Bsin Bcos Ccos Bsin Csin(BC)又在三角形ABC中,sin(BC)sin A0, 2sin Acos Bsin A,即cos B,B() b27a2c22accos B, 7a2c2ac,又 (ac)216a2c22ac, ac3, SABCacsin B,即SABC320分析:由于所证明的是三角形的边角关系,很自然联想到应用正余弦定理解:由余弦定理a2b2c22bccos A;b2a2c22accos B得a2b2b2a22bccos A2accos B, 2(a2b2)2bccos A2accos B,由正弦定理得 a2R sin A,b2R sin B,c2R sin C,故命题成立.

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|