1、中考数学分类试题汇编二次函数图像信息题1. (2017黄石市)如图是二次函数的图象,对下列结论:;,其中错误的个数是( )A3B2C1D0 第3题图第2题图第1题图2. (2017年烟台市)二次函数的图象如图所示,对称轴是直线,下列结论:;.其中正确的是( )A B C. D3(2017甘肃省天水市)如图是抛物线y1=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1;
2、x(ax+b)a+b,其中正确的结论是 (只填写序号)4. (2017乐山市)已知二次函数y=x2-2mx(m为常数),当-1x2时,函数值y的最小值为-2,则m的值是 或 或5(2017黔东南州)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,给出下列结论:b2=4ac;abc0;ac;4a2b+c0,其中正确的个数有()A1个 B2个 C3个 D4个第6题图第7题图第5题图6(2017年贵州省安顺市)二次函数y=ax2+bx+c(0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中结论正确的个数是()A1 B2 C3
3、D47(2017年四川省广安)如图所示,抛物线y=ax2+bx+c的顶点为B(1,3),与x轴的交点A在点(3,0)和(2,0)之间,以下结论:b24ac=0;a+b+c0;2ab=0;ca=3 其中正确的个数是()A1B2C3D4 D8(2017年甘肃省天水市)如图,在等腰ABC中,AB=AC=4cm,B=30,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BAAC方向运动到点C停止,若BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()ABC1. (2017黄石市)如图是二次函数的图象,对下列结论:
4、;,其中错误的个数是( )A3B2C1D0 2. (2017年烟台市)二次函数的图象如图所示,对称轴是直线,下列结论:;.其中正确的是( )A B C. D3(2017年甘肃省天水市)如图是抛物线y1=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1;x(ax+b)a+b,其中正确的结论是 (只填写序号)【解答】解:由图象可知:a0,b0,c0,故abc0,故错误观察
5、图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故正确根据对称性可知抛物线与x轴的另一个交点是(2,0),故错误,观察图象可知,当1x4时,有y2y1,故错误,因为x=1时,y1有最大值,所以ax2+bx+ca+b+c,即x(ax+b)a+b,故正确,所以正确,故答案为4. (2017乐山市)已知二次函数(为常数),当时,函数值的最小值为,则的值是 或 或5(2017黔东南州)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,给出下列结论:b2=4ac;abc0;ac;4a2b+c0,其中正确的个数有()A1个B2个C3个D4个【考点】H4:
6、二次函数图象与系数的关系【分析】利用抛物线与x轴有2个交点和判别式的意义对进行判断;由抛物线开口方向得到a0,由抛物线对称轴位置确定b0,由抛物线与y轴交点位置得到c0,则可作判断;利用x=1时ab+c0,然后把b=2a代入可判断;利用抛物线的对称性得到x=2和x=0时的函数值相等,即x=2时,y0,则可进行判断【解答】解:抛物线与x轴有2个交点,=b24ac0,所以错误;抛物线开口向上,a0,抛物线的对称轴在y轴的右侧,a、b同号,b0,抛物线与y轴交点在x轴上方,c0,abc0,所以正确;x=1时,y0,即ab+c0,对称轴为直线x=1,=1,b=2a,a2a+c0,即ac,所以正确;抛物
7、线的对称轴为直线x=1,x=2和x=0时的函数值相等,即x=2时,y0,4a2b+c0,所以正确所以本题正确的有:,三个,故选C6(2017年贵州省安顺市)二次函数y=ax2+bx+c(0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中结论正确的个数是()A1B2C3D4【考点】H4:二次函数图象与系数的关系【分析】由抛物线与x轴有两个交点得到b24ac0,可判断;根据对称轴是x=1,可得x=2、0时,y的值相等,所以4a2b+c0,可判断;根据=1,得出b=2a,再根据a+b+c0,可得b+b+c0,所以3b+2c0,可判断;x=1
8、时该二次函数取得最大值,据此可判断【解答】解:图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b24ac0,4acb20,正确;=1,b=2a,a+b+c0,b+b+c0,3b+2c0,是正确;当x=2时,y0,4a2b+c0,4a+c2b,错误;由图象可知x=1时该二次函数取得最大值,ab+cam2+bm+c(m1)m(am+b)ab故错误正确的有两个,故选B7(2017年四川省广安)如图所示,抛物线y=ax2+bx+c的顶点为B(1,3),与x轴的交点A在点(3,0)和(2,0)之间,以下结论:b24ac=0;a+b+c0;2ab=0;ca=3其中正确的有()A1B2C
9、3D4【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系【分析】根据抛物线的图象与性质即可判断【解答】解:抛物线与x轴有两个交点,0,b24ac0,故错误;由于对称轴为x=1,x=3与x=1关于x=1对称,x=3时,y0,x=1时,y=a+b+c0,故错误;对称轴为x=1,2ab=0,故正确;顶点为B(1,3),y=ab+c=3,y=a2a+c=3,即ca=3,故正确;故选(B)82017年甘肃省天水市如图,在等腰ABC中,AB=AC=4cm,B=30,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BAAC方向运动到点C停止,若
10、BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()ABCD【解答】解:作AHBC于H,AB=AC=4cm,BH=CH,B=30,AH=AB=2,BH=AH=2,BC=2BH=4,点P运动的速度为cm/s,Q点运动的速度为1cm/s,点P从B点运动到C需4s,Q点运动到C需8s,当0x4时,作QDBC于D,如图1,BQ=x,BP=x,在RtBDQ中,DQ=BQ=x,y=xx=x2,当4x8时,作QDBC于D,如图2,CQ=8x,BP=4在RtBDQ中,DQ=CQ=(8x),y=(8x)4=x+8,综上所述,y=9(2017年湖北省荆州市)规定:如果关于x
11、的一元二次方程ax2+bx+c=0(a0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论:方程x2+2x8=0是倍根方程;若关于x的方程x2+ax+2=0是倍根方程,则a=3;若关于x的方程ax26ax+c=0(a0)是倍根方程,则抛物线y=ax26ax+c与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程上述结论中正确的有()ABCD【考点】G6:反比例函数图象上点的坐标特征;AA:根的判别式;AB:根与系数的关系;HA:抛物线与x轴的交点【分析】通过解方程得到该方程的根,结
12、合“倍根方程”的定义进行判断;设x2=2x1,得到x1x2=2x12=2,得到当x1=1时,x2=2,当x1=1时,x2=2,于是得到结论;根据“倍根方程”的定义即可得到结论;若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:由x22x8=0,得(x4)(x+2)=0,解得x1=4,x2=2,x12x2,或x22x1,方程x22x8=0不是倍根方程故错误;关于x的方程x2+ax+2=0是倍根方程,设x2=2x1,x1x2=2x12=2,x1=1,当x1=1时,x2=2,当x1=1时,x2=2,x1+x2=a=3,a=3,故正确;关于x的方程ax26ax+c=0(a0)是倍根方程,x2=2x1,抛物线y=ax26ax+c的对称轴是直线x=3,抛物线y=ax26ax+c与x轴的交点的坐标是(2,0)和(4,0),故正确;点(m,n)在反比例函数y=的图象上,mn=4,解mx2+5x+n=0得x1=,x2=,x2=4x1,关于x的方程mx2+5x+n=0不是倍根方程;故选C
侵权处理QQ:3464097650--上传资料QQ:3464097650
【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。