ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:834KB ,
文档编号:5570756      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5570756.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(数列知识点大全及经典测试题1(DOC 13页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

数列知识点大全及经典测试题1(DOC 13页).doc

1、数列知识点回顾第一部分:数列的基本概念1理解数列定义的四个要点数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列在数列中同一个数可以重复出现项a与项数n是两个根本不同的概念数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2数列的通项公式一个数列 a的第n项a与项数n之间的函数关系,如果用一个公式a=来表示,就把这个公式叫做数列 a的通项公式。若给出数列 a的通项公式,则这个数列是已知的。若数列 a的前n项和记为S,则S与a的关系是:a

2、=。第二部分:等差数列1等差数列定义的几个特点: 公差是从第一项起,每一项减去它前一项的差(同一常数),即d = aa(n2)或d = aa (nN)要证明一个数列是等差数列,必须对任意nN,aa= d (n2)或d = aa都成立一般采用的形式为: 当n2时,有aa= d (d为常数)当n时,有aa= d (d为常数)当n2时,有aa= aa成立若判断数列 a不是等差数列,只需有aaaa即可2等差中项若a、A、b成等差数列,即A=,则A是a与b的等差中项;若A=,则a、A、b成等差数列,故A=是a、A、b成等差数列,的充要条件。由于a=,所以,等差数列的每一项都是它前一项与后一项的等差中项。

3、3等差数列的基本性质公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd若 a、 b为等差数列,则 ab与kab(k、b为非零常数)也是等差数列对任何m、n,在等差数列 a中有:a= a+ (nm)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、一般地,如果l,k,p,m,n,r,皆为自然数,且l + k + p + = m + n + r + (两边的自然数个数相等),那么当a为等差数列时,有:a+ a+ a+ = a+ a+ a+ 公差为d的等差数列,从中取出等距离

4、的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)如果 a是等差数列,公差为d,那么,a,a,a、a也是等差数列,其公差为d;在等差数列 a中,aa= aa= md (其中m、k、)在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d0时,等差数列中的数等于一个常数设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(1),则a=4等差数列前n项和公式S=与S= na的比较前n项和公式公式适用范围相同点S=用于已知等差数列的首项和末项都是等差

5、数列的前n项和公式S= na用于已知等差数列的首项和公差5等差数列前n项和公式S的基本性质数列 a为等差数列的充要条件是:数列 a的前n项和S可以写成S= an+ bn的形式(其中a、b为常数)在等差数列 a中,当项数为2n (nN)时,SS= nd,=;当项数为(2n1) (n)时,SS= a,=若数列 a为等差数列,则S,SS,SS,仍然成等差数列,公差为若两个等差数列 a、 b的前n项和分别是S、T(n为奇数),则=在等差数列 a中,S= a,S= b (nm),则S=(ab)等差数列a中,是n的一次函数,且点(n,)均在直线y =x + (a)上记等差数列a的前n项和为S若a0,公差d

6、0,则当a0且a0时,S最大;若a0 ,公差d0,则当a0且a0时,S最小第三部分:等比数列1正确理解等比数列的含义q是指从第2项起每一项与前一项的比,顺序不要错,即q = (n)或q = (n2)由定义可知,等比数列的任意一项都不为0,因而公比q也不为0要证明一个数列是等比数列,必须对任意n,= q;或= q (n2)都成立2等比中项与等差中项的主要区别如果G是a与b的等比中项,那么=,即G= ab,G =所以,只要两个同号的数才有等比中项,而且等比中项有两个,它们互为相反数;如果A是a与b的等差中项,那么等差中项A唯一地表示为A=,其中,a与b没有同号的限制在这里,等差中项与等比中项既有数

7、量上的差异,又有限制条件的不同3等比数列的基本性质公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q( m为等距离的项数之差)对任何m、n,在等比数列 a中有:a= a q,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性一般地,如果t ,k,p,m,n,r,皆为自然数,且t + k,p,m + = m + n + r + (两边的自然数个数相等),那么当a为等比数列时,有:aaa = aaa 若 a是公比为q的等比数列,则| a|、a、ka、也是等比数列,其公比分别为| q |、q、q、如果 a是等比数列,公比为q,那么

8、,a,a,a,a,是以q为公比的等比数列如果 a是等比数列,那么对任意在n,都有aa= aq0两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积当q1且a0或0q1且a0时,等比数列为递增数列;当a0且0q1或a0且q1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q0时,等比数列为摆动数列4等比数列前n项和公式S的基本性质如果数列a是公比为q 的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等

9、于1,如果q可能等于1,则需分q = 1和q1进行讨论当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=若S是以q为公比的等比数列,则有S= SqS若数列 a为等比数列,则S,SS,SS,仍然成等比数列若项数为3n的等比数列(q1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列二、难点突破1并不是所有的数列都有通项公式,一个数列有通项公式在形式上也不一定唯一已知一个数列的前几项,这个数列的通项公式更不是唯一的2等差(比)数列的定义中有两个要点:一是“从第2项起”,二是“每一项与它前一项的

10、差(比)等于同一个常数”这里的“从第2项起”是为了使每一项与它前面一项都确实存在,而“同一个常数”则是保证至少含有3项所以,一个数列是等差(比)数列的必要非充分条件是这个数列至少含有3项3数列的表示方法应注意的两个问题: a与a是不同的,前者表示数列a,a,a,而后者仅表示这个数列的第n项;数列a,a,a,与集合 a,a,a,不同,差别有两点:数列是一列有序排布的数,而集合是一个有确定范围的整体;数列的项有明确的顺序性,而集合的元素间没有顺序性4注意设元的技巧时,等比数列的奇数个项与偶数个项有区别,即:对连续奇数个项的等比数列,若已知其积为S,则通常设,aq, aq, a,aq,aq,;对连续

11、偶数个项同号的等比数列,若已知其积为S,则通常设,aq, aq, aq,aq,5一个数列为等比数列的必要条件是该数列各项均不为0,因此,在研究等比数列时,要注意a0,因为当a= 0时,虽有a= a a成立,但a不是等比数列,即“b= a c”是a、b、 c成等比数列的必要非充分条件;对比等差数列a,“2b = a + c”是a、b、 c成等差数列的充要条件,这一点同学们要分清6由等比数列定义知,等比数列各项均不为0,因此,判断一数列是否成等比数列,首先要注意特殊情况“0”等比数列的前n项和公式蕴含着分类讨论思想,需分分q = 1和q1进行分类讨论,在具体运用公式时,常常因考虑不周而出错数列基础

12、知识定时练习题 (满分为100分+附加题20分,共120分;定时练习时间120分钟)一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列四个数中,哪一个是数列中的一项 ( ) (A)380 (B)39 (C)35 (D)232在等差数列中,公差,则的值为( ) (A)40 (B)45 (C)50 (D)55 3一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( ) (A)1997 (B)1999 (C)2001 (D)2003 4一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首

13、项为1,且中间两项的和为24,则此等比数列的项数为( ) (A)12 (B)10 (C)8 (D)6 5已知1是与的等比中项,又是与的等差中项,则的值是( ) (A)1或 (B)1或 (C)1或 (D)1或6首项为24的等差数列,从第10项开始为正,则公差的取值范围是( )(A) (B) (C) (D)37如果-1,a,b,c,-9成等比数列,那么( )(A)b=3,ac=9(B)b=-3,ac=9 (C)b=3,ac=-9 (D)b=-3,ac=-98在等差数列a中,已知a=2,a+a=13,则a+a+a等于( )A.40 B.42 C.43 D.459已知某等差数列共有10项,其奇数项之和

14、为15,偶数项之和为30,则其公差为( )A.5 B.4 C. 3 D. 210若互不相等的实数成等差数列,成等比数列,且,则( )A4 B2 C2 D411在等比数列an中,a11,a103,则a2 a3 a4 a5 a6 a7 a8 a9 = ( )A. 81 B. 27 C. D. 24312 在等比数列中,前项和为,若数列也是等比数列,则等于( )(A) (B) (C) (D)【点评】本题考查了等比数列的定义和求和公式,着重考查了运算能力。13设是公差为正数的等差数列,若,则( )A B C D14设是等差数列的前项和,若,则( )A B C D15设Sn是等差数列an的前n项和,若,

15、则 ( )(A) (B) (C) (D)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在题中横线上)1在数列中,且,则 2等比数列的前三项为,则 3 若数列满足:,2,3.则. 4设为等差数列的前n项和,14,S1030,则S9.5在数列中,若,则该数列的通项 。三、解答题(本大题共4小题,每小题10分,共40分)1已知为等比数列,求的通项式。2设等比数列的前n项和为,3 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an .4数列的前项和记为()求的通项公式;()等差数列的各项为正,其前项和为,且,又成等比数列,求

16、本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能力。满分12分。四、附加题(20分)某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室。据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?1. A 2.B 3.D 4.C 5.D 6.D 7.B 解:由等比数列的性质可得ac(1)(9)9,bb9且b与奇数项的符号相同,故b3,选B 8.B 解:在等差数列中,已知 d=3,a5=14,=3a5=42,选B.9.C 解:,故选C. 10. D 解:由互不相等的实数成等差数列可

17、设abd,cbd,由可得b2,所以a2d,c2d,又成等比数列可得d6,所以a4,选D 11.A 解:因为数列an是等比数列,且a11,a103,所以a2a3a4a5a6a7a8a9(a2a9)(a3a8)(a4a7)(a5a6)(a1a10)43481,故选A 12.C【解析】因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C。 13.B【解析】是公差为正数的等差数列,若,则, d=3,选B. 14. D 【解析】是等差数列的前项和,若 ,选D. 15.A 解析:由等差数列的求和公式可得且所以,故选A二、填空题 1. 99 2. 3. 解:数列满足:,2,3,该数列为公比为2的等

18、比数列, .4.解:设等差数列的首项为a1,公差为d,由题意得,联立解得a1=2,d=1,所以S95.解:由可得数列为公差为2的等差数列,又,所以2n1三、解答题1.解: 设等比数列an的公比为q, 则q0, a2= = , a4=a3q=2q所以 + 2q= , 解得q1= , q2= 3, 当q1=, a1=18.所以 an=18()n1= = 233n. 当q=3时, a1= , 所以an=3n1=23n3.2.解:设的公比为q,由,所以得由、式得整理得解得所以 q2或q2将q2代入式得,所以将q2代入式得,所以3.解析:解: 10Sn=an2+5an+6, 10a1=a12+5a1+6

19、,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an10 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时,a3=12, a15=72, 有a32=a1a15 , a1=2, an=5n3附加题 解: 引入字母,转化为递归数列模型.设第n次去健身房的人数为an,去娱乐室的人数为bn,则.,于是即 .故随着时间的推移,去健身房的人数稳定在100人左右.4.解:()由可得,两式相减得又 故是首项为,公比为得等比数列 ()设的公差为由得,可得,可得故可设又由题意可得解得等差数列的各项为正,

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|