ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:308.50KB ,
文档编号:5699017      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5699017.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高考数学放缩法精选精讲(DOC 7页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高考数学放缩法精选精讲(DOC 7页).doc

1、个性化教学辅导教案高考数学“放缩法”精选精讲学科:数学 任课教师: 林老师 授课时间: 姓名年级高三性别教学课题教学目标(知识点、考点、能力、方法)高考数学“放缩法”精选精讲难点重点课堂教学过程课前检查作业完成情况:优 良 中 差 建议_过程高考数学“放缩法”精选精讲1、添加或舍弃一些正项(或负项)例1、已知求证:证明: 本题在放缩时就舍去了,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)例2、函数f(x)=,求证:f(1)+f(2)+f(n)n+.证明:由f(n)= =1-得f(1)+f(2)+f(n).若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,3、先放缩,后裂

2、项(或先裂项再放缩)例3、已知an=n ,求证:3证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;例4、已知数列满足求证:证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明.5、逐项放大或缩小例5、设求证: 证明: , 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。6、固定一部分项,放缩另外的项;例6、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。7、利用基本不等式放

3、缩例7、已知,证明:不等式对任何正整数都成立.证明:要证,只要证 .因为 ,故只要证 ,即只要证 .因为,所以命题得证.本题通过化简整理之后,再利用基本不等式由放大即可.8、先适当组合, 排序, 再逐项比较或放缩例8、.已知i,m、n是正整数,且1imn.(1)证明:niAmiA;(2)证明:(1+m)n(1+n)m证明:(1)对于1im,且A =m(mi+1),由于mn,对于整数k=1,2,i1,有,所以(2)由二项式定理有:(1+m)n=1+Cm+Cm2+Cmn,(1+n)m=1+Cn+Cn2+Cnm,由(1)知miAniA (1imn ,而C=miCinniCim(1mnm0C=n0C=

4、1,mC=nC=mn,m2Cn2C,mmCnmC,mm+1C0,mnC0,1+Cm+Cm2+Cmn1+Cn+C2mn2+Cnm,即(1+m)n(1+n)m成立. 求证证明本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。例 1 4 分析 浅谈用放缩法证明不等式的方法与技巧用放缩法证明下列各题。例1 求证:证明:因为所以左边因为99100(放大)所以例2 若求证:证明:因为所以因为因为(放大),所以又所以是增函数,所以,所以例3 求证:证明:(因为)又因为(放大),所以所以例4 已知求证:证明:因为例5 求证:证明:因为(因为)(放大)所以例6 求证:当

5、时,函数的最小值是当时,函数的最大值是证明:因为原函数配方得又因为所以(缩小),所以函数y的最小值是。当所以(放大),所以函数y的最大值是例7 求证:证明:因为(分母有理化)所以原不等式成立。例8 若求证:证明:因为而所以所以同理可证(当且仅当时,取等号)。例9 已知a、b、c分别是一个三角形的三边之长,求证:证明:不妨设据三角形三边关系定理有:便得所以原不等式成立。例10 求证:证明:因为又所以原不等式成立。例11 求证:证明:因为左边证毕。例12 求证证明:因为所以左边注:1、放缩法的理论依据,是不等式的传递性,即若则。2、使用放缩法时,“放”、“缩”都不要过头。3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。常用的有“添舍放缩”和“分式放缩”,都是用于不等式证明中局部放缩。课堂检测听课及知识掌握情况反馈_测试题(累计不超过20分钟)_道;成绩_;教学需:加快;保持;放慢;增加内容课后巩固作业_题;巩固复习_;预习布置_签字教学组长: 教研主任: 校长:学习管理师: 学生签字老师课后老师最欣赏的地方:老师想知道的事情:

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|