1、个性化教学辅导教案高考数学“放缩法”精选精讲学科:数学 任课教师: 林老师 授课时间: 姓名年级高三性别教学课题教学目标(知识点、考点、能力、方法)高考数学“放缩法”精选精讲难点重点课堂教学过程课前检查作业完成情况:优 良 中 差 建议_过程高考数学“放缩法”精选精讲1、添加或舍弃一些正项(或负项)例1、已知求证:证明: 本题在放缩时就舍去了,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)例2、函数f(x)=,求证:f(1)+f(2)+f(n)n+.证明:由f(n)= =1-得f(1)+f(2)+f(n).若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,3、先放缩,后裂
2、项(或先裂项再放缩)例3、已知an=n ,求证:3证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;例4、已知数列满足求证:证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明.5、逐项放大或缩小例5、设求证: 证明: , 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。6、固定一部分项,放缩另外的项;例6、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。7、利用基本不等式放
3、缩例7、已知,证明:不等式对任何正整数都成立.证明:要证,只要证 .因为 ,故只要证 ,即只要证 .因为,所以命题得证.本题通过化简整理之后,再利用基本不等式由放大即可.8、先适当组合, 排序, 再逐项比较或放缩例8、.已知i,m、n是正整数,且1imn.(1)证明:niAmiA;(2)证明:(1+m)n(1+n)m证明:(1)对于1im,且A =m(mi+1),由于mn,对于整数k=1,2,i1,有,所以(2)由二项式定理有:(1+m)n=1+Cm+Cm2+Cmn,(1+n)m=1+Cn+Cn2+Cnm,由(1)知miAniA (1imn ,而C=miCinniCim(1mnm0C=n0C=
4、1,mC=nC=mn,m2Cn2C,mmCnmC,mm+1C0,mnC0,1+Cm+Cm2+Cmn1+Cn+C2mn2+Cnm,即(1+m)n(1+n)m成立. 求证证明本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。例 1 4 分析 浅谈用放缩法证明不等式的方法与技巧用放缩法证明下列各题。例1 求证:证明:因为所以左边因为99100(放大)所以例2 若求证:证明:因为所以因为因为(放大),所以又所以是增函数,所以,所以例3 求证:证明:(因为)又因为(放大),所以所以例4 已知求证:证明:因为例5 求证:证明:因为(因为)(放大)所以例6 求证:当
5、时,函数的最小值是当时,函数的最大值是证明:因为原函数配方得又因为所以(缩小),所以函数y的最小值是。当所以(放大),所以函数y的最大值是例7 求证:证明:因为(分母有理化)所以原不等式成立。例8 若求证:证明:因为而所以所以同理可证(当且仅当时,取等号)。例9 已知a、b、c分别是一个三角形的三边之长,求证:证明:不妨设据三角形三边关系定理有:便得所以原不等式成立。例10 求证:证明:因为又所以原不等式成立。例11 求证:证明:因为左边证毕。例12 求证证明:因为所以左边注:1、放缩法的理论依据,是不等式的传递性,即若则。2、使用放缩法时,“放”、“缩”都不要过头。3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。常用的有“添舍放缩”和“分式放缩”,都是用于不等式证明中局部放缩。课堂检测听课及知识掌握情况反馈_测试题(累计不超过20分钟)_道;成绩_;教学需:加快;保持;放慢;增加内容课后巩固作业_题;巩固复习_;预习布置_签字教学组长: 教研主任: 校长:学习管理师: 学生签字老师课后老师最欣赏的地方:老师想知道的事情: