ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:2.06MB ,
文档编号:5699594      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5699594.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(空间向量在立体几何中地应用(重点知识-高考真题-模拟精选)(DOC 17页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

空间向量在立体几何中地应用(重点知识-高考真题-模拟精选)(DOC 17页).doc

1、实用标准文档空间向量在立体几何中的应用【重要知识】一、 求平面法向量的方法与步骤:1、 选向量:求平面的法向量时,要选取两个相交的向量,如2、 设坐标:设平面法向量的坐标为3、 解方程:联立方程组,并解方程组4、 定结论:求出的法向量中三个坐标不是具体的数值,而是比例关系。设定某个坐标为常 数得到其他坐标二、 利用向量求空间角:1、求异面直线所成的角: 设为异面直线,点为上任意两点,点为上任意两点,所成的角为,则【注】由于异面直线所成的角的范围是:,因此2、 求直线与平面所成的角: 设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与所成的角为,则【注】由于直线与平面所成的角的范围是:

2、,因此3、 求二面角: 设分别为平面的法向量,二面角为,则或,其中三、 利用向量求空间距离:1、 求点到平面的距离 设平面的法向量为,则点到平面的距离为2、 求两条异面直线的距离 设是两条异面直线,是公垂线段的方向向量,分别为上的任意两点,则的距离为【重要题型】1、(2012广东,理)如图所示,在四棱锥中,底面为矩形,点在线段上,(1)证明:(2)若,求二面角的正切值 2、(2013广东,理)如图,在等腰三角形中,分别是上的点,为的中点。将沿折起,得到如图所示的四棱锥,其中。(1)证明:(2)求二面角的平面角的余弦值3、(2009广东,理)如图,已知正方体的棱长为2,点是正方形的中心,点分别是

3、棱、的中点,设分别是点在平面内的正投影。(1)求以为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;(2)证明:直线;(3)求异面直线与所成角的正弦值。4、(2013课标,理)如图,直三棱柱中,分别是的中点,(1)证明:;(2)求二面角的正弦值.5、(2012辽宁,理)如图,直三棱柱,点分别为和的中点(1)证明:;(2)若二面角为直二面角,求的值.6、(2010辽宁,理)已知三棱锥中,为上一点,分别为的中点。(1)证明:;(2)求与平面所成角的大小. 7、(2010广东,理)如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足,(1)证明:;(2)已知点分别为

4、线段上的点,使得,求平面与平面所成二面角的正弦值.8、(2013汕头高二统考,理)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,点在线段上,且(1)求证:;(2)求证:平面;(3)求二面角的余弦值【参考答案】1、(1)证明:,又,(2)解:, 是正方形 建立如图所示的坐标系,则, ,设平面的一个法向量为则,即令,则,即设平面的一个法向量为,则,即令,则,即 设二面角的大小为,则, 2、(1)证明:连接 由图得, 在中,由余弦定理可得, ,即 由翻折的不变性可知, , 同理可证, 又,(2)解:以点为原点,建立空间直角坐标系如图所示 则 所以, 设平面的一个法向量为,则 即 令,则,即由

5、(1)知,为平面的一个法向量即求二面角的平面角的余弦值为3、(1)解:依题意得,且四边形在平面内的正投影为四边形 点是正方形的中心, 故所求的四棱锥的体积为(2)证明:由(1)知,与都是等腰直角三角形 ,即 又, ,(3)解:以为原点,分别为轴,轴,轴的正向,为1个单位长度,建立空间直角坐标系,则,4、(1)证明:连接交于点,则为中点 又是中点,连接,则 ,(2)由得,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,设,则, ,设是平面的法向量,则,即,可取同理,设是平面的法向量,则,即,可取从而,故即二面角的正弦值为5、(1)证明:连接 三棱柱为直三棱柱,为的中点 为的中点 又

6、为的中点 , (2)以为坐标原点,分别以直线为轴,轴,轴的正方向建立空间直角坐标系,如图所示:设,则于是,因此,设是平面的法向量,由得,可取同理,设是平面的法向量,由得,可取为直二面角,即,解得6、(1)证明:设,以为原点,分别为轴正方向建立空间直角坐标系,如图所示:则由可知,(2)设为平面的一个法向量由得,可取设与平面所成角为,则7、(1)证明:为 的中点,为直径 又, ,(2)如图,以为原点,分别为轴正方向,过作平面的垂线,建立空间直角坐标系,连接由此得,设平面的法向量为,由得, ,可取同理,设平面的法向量为,可取平面与平面所成二面角的正弦值为8、证明:(1) 因为是正三角形,是中点,所以,即1分又因为,平面,2分又,所以平面3分又平面,所以4分(2)在正三角形中,5分在中,因为为中点,所以,所以,所以6分在等腰直角三角形中,所以,所以8分又平面,平面,所以平面9分(3)因为,所以,分别以为轴, 轴, 轴建立如图的空间直角坐标系,所以10分由(2)可知,为平面的法向量11分,设平面的一个法向量为,则,即,令则平面的一个法向量为12分设二面角的大小为(显然为锐角), 则所以二面角余弦值为14分文案大全

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|