ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:1.66MB ,
文档编号:5710478      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5710478.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(ziliao2023)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(高中数学新教材《6433余弦定理正弦定理应用举例》公开课优秀课件(经典、).ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

高中数学新教材《6433余弦定理正弦定理应用举例》公开课优秀课件(经典、).ppt

1、人 教 版 高 中 数 学 新 教 材 必 修 第 二 册第六章平面向量及其应用第六章平面向量及其应用6.4.3 6.4.3 余弦定理、正弦定理应用举例余弦定理、正弦定理应用举例1、正弦定理:、正弦定理:RCcBbAa2sinsinsin(其中:(其中:R为为ABC的外接圆半径)的外接圆半径)2、正弦定理的变形:、正弦定理的变形:CRcBRbARasin2,sin2,sin2RcCRbBRaA2sin,2sin,2sincbaCBA:sin:sin:sin复习回顾复习回顾CabbacBaccabAbccbacos2cos2cos2222222222变形变形abcbaCcabacBbcacbA2

2、cos2cos2cos222222222余弦定理:余弦定理:在在 中,以下的三角关系式,在解答有关三角中,以下的三角关系式,在解答有关三角形问题时,经常用到,要记熟并灵活地加以运用:形问题时,经常用到,要记熟并灵活地加以运用:ABC;CBACBACBAcos)cos(,sin)sin(2sin2cos,2cos2sinCBACBA正弦定理sinsinsinabcABC2222222cos2cosbaccaBcababC2222cosabcbcA222222222cos2cos2cos2bcaAbccabBcaabcCabsin:sin:sin:ABCa b c余弦定理一、回顾旧知一、回顾旧知

3、引入新知引入新知问题问题1:回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形?(1)已知两角和一边;2sinsinsinabcRABC2222coscababC(1)已知三边;(2)已知两边和一边对角(2)已知两边和它们的夹角一、回顾旧知一、回顾旧知 引入新知引入新知问题问题1:回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形?二、创设情境,明确目标二、创设情境,明确目标情境:情境:1671年,两个法国天文学家测出了地球与月球之间的距离大约为385 400 km,他们是怎样测出两者之间距离的呢?三、实际问题,建立模型三、实际问题,建立模型例例1 如图,A,B两点都在河的对岸(不可到

4、达),设计一种测量A,B两点间距离的方法,并求出A,B两点间的距离 问题问题2:具体测量时,我们常常遇到“不能到达”的困难,如何设计恰当的测量方案?分析:分析:为了测定河对岸两点A,B间的距离,在岸边选定a公里长的基线CD,并测得ABDCBCA=,ACD=,CDB=,BDA=,求A,B两点的距离三、实际问题,建立模型三、实际问题,建立模型例例1 如图,A,B两点都在河的对岸(不可到达),设计一种测量A,B两点间距离的方法,并求出A,B两点间的距离 在测量过程中,把根据测量的需要而确定的线段叫做基线基线,如例1中的CD为使测量具有较高的精确度,应根据实际需要选取合适的基线长度一般来说,基线越长,

5、测量的精确度越高三、实际问题,建立模型三、实际问题,建立模型 如图,早在1671年,两位法国天文学家为了测 量地球与月球之间的距离,利用几乎位于同一经线上的柏林(点A)与好望角(点B)为基点,测量出,的大小,并计算出两地之间的距离AB,进而算出了地球与月球之间的距离约为385 400 km我们在地球上所能用的最长的基线是地球椭圆轨道的长轴三、实际问题,建立模型三、实际问题,建立模型追问追问1:在上述测量方案下,还有其他计算A,B两点间距离的方法吗?还有其他测量方案吗?追问追问2:若在河岸选取相距40 m的C,D两点,测得BCA=60,ACD=30,CDB=45,BDA=60,求出A,B两点间的

6、距离三、实际问题,建立模型三、实际问题,建立模型问题问题3:如何测量(底部不可到达)高度的问题?例例2 如图,AB是底部B不可到达的一座建筑物,A为建筑物的最高点设计一种测量建筑物高度AB的方法,并求出建筑物的高度三、实际问题,建立模型三、实际问题,建立模型问题问题4:如何测量角度的问题?例例3 位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险后抛锚等待营救甲船立即前往救援,同时把消息告知位于甲船南偏西30,且与甲船相距7 n mile 的C处的乙船那么乙船前往营救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东多少度(精确到1)?需要航行的距离是多少海里(精确到1 n mile)?三、实际问题,建立模型三、实际问题,建立模型1解决应用题的思想方法是什么?解决应用题的思想方法是什么?2 解决应用题的步骤是什么?实际问题数学问题(画出图形)解三角形问题数学结论分析转化把实际问题转化为数学问题,即数学建模思想四、反思总结,提炼收获四、反思总结,提炼收获课堂练习:课堂练习:教科书第51页的练习五、课堂练习五、课堂练习作业:作业:教科书第53页练习第8,9题六、布置作业六、布置作业

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|