ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:380KB ,
文档编号:5720835      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5720835.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(最新等差数列前n项和教案(公开课教案)(DOC 6页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

最新等差数列前n项和教案(公开课教案)(DOC 6页).doc

1、精品文档“等差数列的前n项和”教案教学环节教 师 活 动 学 生 活 动活 动说 明新课引入创设情境:首先让学生欣赏一幅美丽的图片泰姬陵。泰姬陵是印度著名的旅游景点,传说中陵寝中有一个三角形的图案嵌有大小相同的宝石,共有100层,同时提出第一个问题:你能计算出这个图案一共花了多少颗宝石吗?也即计算1+2+3+.+100=?问题2:何老师按揭买房,向银行贷款25万元,采取等额本金的还款方式,即每月还款额比上月减少一定的数额。2007年1月,我第一次向银行还款2348元,以后每月比上月的还款额减少5元,若以2007年1月银行贷款利率为基准利率,那么到2026年12月最后一次还款为止,何老师连本带利

2、一共还款多少万元?现实模型: 图片欣赏 生活实例模 型直 观用实际生活引入新课。探 索 公 式探 索 公 式议练活动认识公式认识公式议练活动课 堂总结首先认识一位伟大的数学家高斯,然后提出问题:高斯是如何快速计算1+2+3+4+.+100?设等差数列前n项和为 ,则 问题1老师:利用高斯算法如何求等差数列的前n项和公式?老师:但是否刚好配对成功呢?(1) n为偶数时: (2) n为奇数时:老师:那么该如何解决落单的呢?同过对n取值的讨论,得到了前n项和求和公式:但是对n讨论麻烦了,能否有更好的方法求前n项和公式呢?接下来给出实际问题:伐木工人是如何快速计算堆放在木场的木头根数呢? 问题2:如何

3、用倒置的思想求等差数列前n项和呢?方法一:两式相加得:方法二同样利用倒序相加求和法,教材做了如下处理:两式相加得:引导学生带入等差数列的通项公式,换掉 整理得到公式2。例1:计算(1)1+2+3+n(2)1+3+5+(2n-1)(3)2+4+6+2n (4)1-2+3-4+5-6+(2n-1)-2n 教师通过动画演示给(1),(2)问一个直观的解释。变式练习:课前提出的房贷问题。解:由已知每月还款数成等差数列,设为:问题3:能否给求和公式一个几何解释呢? 教师提示将求和公式与梯形建立联系。 n剖析公式: 教师提示,从方程中量的关系入手。例2 等差数列-10,-6,-2,2, 前多少项的和为54

4、? 解:设题中的等差数列是,前n项和为: 则10,d6(10)4 令54,由等差数列前n项和公式,得: 解得 9,3(舍去)因此,等差数列的前9项和是 54 例3: 解:(1) (2) 本小题主要考察了对公式一的整体应用。根据课堂剩余时间,本题作为机动练习,(2)小问留给学生课后完成。1、教师引导学生归纳总结本节课所学习的主要内容2、课后作业:教材118页:1、2、3、5、6、7 课后思考: 等差数列的前n项和的求和方法除了倒序相加法还有没有其它方法呢?3、对求和史的了解 我国数列求和的概念起源很早,在北朝时,张丘建始创等差数列求和解法。他在张丘建算经中给出等差数列求和问题:例如:今有女子不善

5、织布,每天所织的布以同数递减,初日织五尺,末一日织一尺,共织三十日,问共织几何?原书的解法是:“并初、末日织布数,半之再乘以织日数,即得。”学生:1+100=101,2+99=101,.50+51=101,所以原式=50(1+101)=5050学生:将首末两项配对,第二项与倒数第二项配对,以此类推,每一对的和都相等,并且都等于 。学生:不一定,需要对n取值的奇偶进行讨论。当n为偶数时刚好配对成功。 当n为奇数时,中间的一项落单了。(可能部分学生在此会遇到困难,老师做适当的引导。)学生:观察的脚标与 脚标的关系,即: 学生观察动画演示,不难发现用倒置的思想来解决此问题。 (由上一问题的解决,学生

6、容易想到倒序相加求和法。) 学生:利用倒序相加求和法。将中的每一项用等差数列的通项公式进行巧妙的改写,在倒序相加求和时,每一组中的d都被正负抵消了。学生类比方法一与方法二的联系与区别。学生自己阅读教材,体会教材的解法是如何运用求和公式。 观察多媒体课件演示。学生:要求总还款额实际就是对一个等差数列求和。学生:将求和公式与梯形面积公式建立联系,而梯形面积公式的推导也正是利用了倒置的思想。学生:同样将公式2与梯形面积公式建立联系。用“割”的思想将梯形分做一个平行四边形和一个三角形,而梯形面积就是这两部分面积之和。学生讨论:公式中一共含有五个量,根据三个公式之间的联系,由方程的思想,知三可求二。 学

7、生讨论分析题目所含的已知量,选取了公式2进行运算,利用了方程的思想。需要注意的是学生可能会把公差认为是-4,以及解得n的值后未把n=-3舍去。学生进行了分组讨论,然后每组派学生代表进行分析。不少小组首先对已知条件作转化,希望能通过解方程求出首项和公差,但发现条件不够,不能解出这些基本量,教师做适当的引导。 本环节由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明(1)回顾从特殊到一般,一般到特殊的研究方法.(2)体会等差数列的基本元表示方法,倒序相加的算法,及数形结合的数学思想.(3)掌握等差数列的两个求和公式及简单应用。 了解我国古代研究等差数列求和的情况。高斯求和众所周知,学生能

8、快速解答。 这里用到了等差数列脚标和性质 从高斯算法出发,对n进行讨论寻找求和公式思路自然,学生容易想到。对中间项的解决办法的过程中,进一步让学生体会研究数列就是对脚标数学的研究。倒序相加求和法是重要的数学思想,为以后数列求和的学习做好了铺垫。在等差数列前n项和公式的推导过程中,通过问题获得知识,让学生经历“发现问题提出问题解决问题”的过程通过对实际问题的解决让学生认识到数学来源于生活,同时又服务于生活利用数形结合的思想,使学生对两个公式有直观的认识,体会数学的图形语言。例2在解决了例1的基础上,由浅入深,深化了对公式的理解,体现了方程的思想。(2)东西全紧扣教材,让学生体会整体应用公式,类比

9、化归的思想方法,同时,为以后综合问题的解答设下伏笔。人民广场地铁站有一家名为“漂亮女生”的饰品店,小店新开,10平方米不到的店堂里挤满了穿着时尚的女孩子。不几日,在北京东路、淮海东路也发现了“漂亮女生”的踪影,生意也十分火爆。现在上海卖饰品的小店不计其数,大家都在叫生意难做,而“漂亮女生”却用自己独特的经营方式和魅力吸引了大批的女生。是 否标题:大学生“负债消费“成潮流 2004年3月18日(一)创业机会分析通过对等差数列求和历史的了解,渗透数学史和数学文化。3、竞争对手分析(一)DIY手工艺品的“多样化”二、教学反思根据教学经历和学生的反馈信息,笔者对本课有如下五点反思:(1)根据实际教学情

10、况,学生比较容易掌握本课知识。在教学过程中,我重点突出了学生活动,设计了四个活动环节:(1)公式的探究活动;(2)公式的认识(3)公式的应用(4)学生课后的拓展学习。2003年,上海市总人口达到1464万人,上海是全国第一个出现人口负增长的地区。(2)本课特别强调了几何直观,我不仅对求和公式给出了几何解释,也对部分习题给出了几何解释,体现了数形结合的思想方法。6、你购买DIY手工艺制品的目的有那些?(3)由于高斯求和法众所周知,于是我补充了我国古代研究数列求和的情况,但由于时间关系不能展开讲解,所以如何在课后引导学生进行了解是一个值得研究的问题。(2)东西全(4)本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。(5)目标达成 本课注重在课堂教学活动中实现目标。 提出实际问题 知识与技能目标1 例题讲解 知识与技能目标2 深化理解 知识与技能目标3 活动参与 过程与方法目标 感悟数学史 情感与价值目标应为培养出创新人才新型的高斯而努力。精品文档

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|