ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:426KB ,
文档编号:5750794      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5750794.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(等腰三角形常用辅助线专题练习(含答案)汇总(DOC 13页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

等腰三角形常用辅助线专题练习(含答案)汇总(DOC 13页).doc

1、等腰三角形常用辅助线 专题练习(含答案)1.如图:已知,点D、E在三角形ABC的边BC上, AB=AC,AD=AE,求证:BD=CE。 证明:作AFBC,垂足为F, 则AFDE。 AB=AC,AD=AE又AFBC ,AFDE, BF=CF,DF=EF (等腰三角形底边上的高与 底边上的中线互相重合)。 BD=CE.2.如图,在三角形ABC中,AB=AC,AF平行BC于F, D是AC边上任意一点,延长BA到E,使AE=AD, 连接 DE,试判断直线AF与DE的位置关系,并说 明理由解:AFDE理由: 延长ED交BC于G, AB=AC,AE=AD B=C,E=ADE B+E=C+ADE ADE=C

2、DG B+E=C+CDG B+E=DGC,C+CDG=BGE, BGE+CGD=180 BGE=CGD=90 EGBC AFBC AFDE解法2:过A点作ABC底边上的高,再用BAC=D+AED=2ADE, 即CAG=AED,证明AGDE 利用AFBC证明AFDE3.如图,ABC中,BA=BC,点D是AB延长线上一点, DFAC交BC于E,求证:DBE是等腰三角形。证明:在ABC中, BA=BC, A=C, DFAC, C+FEC=90, A+D=90, FEC=D FEC=BED, BED=D, BD=BE, 即DBE是等腰三角形4. 如图,ABC中,AB=AC,E在AC上,且AD=AE,D

3、E 的延长线与BC相交于F。求证:DFBC.证明:AB=AC, B=C, 又AD=AE, D=AED,B+D=C+AED, B+D=C+CEF,EFC=BFE=180 1/2 = 90, DFBC;若把“AD =AE”与结论“DFBC”互换,结论也成立。若把条件“AB=AC”与结论“DFBC”互换,结论依然成立。5. 如图,AB=AE,BC=ED, B=E,AMCD, A 求证:CM=MD.证明: 连接AC,ADAB=AE,B=E,BC=ED ABCAED(SAS)AC=ADAMCD AMC=AMD=90 AM=AM (公共边) RTACMRTADM (HL)CM=DM6.如图,已知AD是AB

4、C的中线,BE交AC于F, 且AE=EF,求证:BF=AC证明:过B点做AC的平行线,交AD的延长线于G点 AD为中线,BD=CD BG平行于AC, FGB=CAF, DBG=ACD 在AFE和GFB中,FGB=CAF,GFB=AFE AFEGFB FGB=FAEAE=EF,FAE=AFEBFG=G GFB为等腰三角形,且BF=BG 在ADC和GBD中 DBG=ACD,BD=CD, BDG=CDA ADCGBD BG=ACBF=AC7.已知:如图,ABC(ABAC)中,D、E在BC上, 且DE=EC,过D点作DFBA,交AE于点F,DF=AC, 求证:AE平分BAC证明:延长AE,过D作DMA

5、C交AE延长线于M M=1,C=2 在DEM与CEA中 M=1,C=2, DE=CE DEMCEA DM=CA 又DF=CA,DM=DF,M=3 ABFD,3=4,4=1 AE平分BAC8. 已知:如图,ABC中,AB=AC,在AB上取一点D,在 延长线上取一点E,连接DE交BC于点F,若F是DE中点。求 证:BD=CE证明:过D作DFAC交BC于F, DFAC(已知), DFC=FCE,DFB=ACB(平行线的性质) AB=AC(已知), B=ACB(等边对等角), B=DFB(等量代换), BD=DF(等角对等边), BD=CE(已知), DF=CE(等量代换), DFC=FCE, DGF

6、=CGE(已证),DFGECG(AAS),DG=GE(对应边相等)9. 已知:如图,在ABC中,AB=AC=CE,B是AD上一点, BECB 交CD于E,ACDC, 求证:BE=1/2BC证明:过点A作AFBC交BC于点FABC是等腰三角形,AB=AC,ABF=ACF(1) AF是BC上的垂直平分线,AFBC,BF=CF=BC/2(2) BEBC,BE/AF DBE=BAF(3) CBE=90 DBE+ABF=90=ACF+ECB(4) 由(1)和(4)知道:DBE=ECB(5) 由(3)和(5)知道:BAF=ECB 又AB=CE,BFA=EBC=90 RTBFARTEBC(角角边) BF=E

7、B(6) 由(2)和(6)知道:BE=BC/210.如图,AD为ABC的角平分线,M为BC的中点,MEDA交 BA延长线于E, 求证:BE=CF=1/2(AB+AC)证明: (1)延长EM,使EM=MG,连接CG点M是BC的中点 ,BM=CM BME=CMG BMECMG(SAS)BE=CG,E=GAD平分BAC ,BAD=CAD MEDA,BAD=E,CAD=AFE E=AFE, AE=AF AFE=CFG , G=CFG CF=CG , BE=CG, BE=CF(2)BE=AB+AE,2BE=2AB+2AECF=BE,AC=CF+AF,AE=AF2BE=2CF=AB+(AB+AE)+AE

8、=AB+BE+AE=AB+(CF+AE) AC=AF+CF 2BE=AB+AC BE=CF=1/2(AB+AC)11.如图,已知ABC中,ADBC,ABC=2C. 试说明AB+BD=CD的理由。 证明: 在DC上截取DE=BD,连接AE ADBC,ADB=ADE=90 AD=AD RTADBRTADE(SAS) AB=AE ,ABC=AEBAEB=C+EAC ABC=2C(已知) EAC=CAE=CE ,AB=CE CD=CE+DE ,AB+BD=CD12.已知:如图,AD是ABC的角平分线,且AC=AB+BD. 求证:B=2C. 证明:在AC上作AEAB,连结DE AC=AB+BDAE+CE

9、 ,BDCE AD是角平分线 ,BADEAD 又AB=AE,AD=AD ABDEAD BAED,BDDECEEDC=C,AED2C即:B2C13.如图所示,已知在ABC中AD是A的平分线,且B=2C. 求证:AC=AB+BD.证明:延长AB到E,使AC=AE,连接DEAD是BAC的角平分线 BAD=DAC(角平分线的定义) 公共边AD=AD AC=AE BAD=DAC ACDAED (SAS) ACB=DEA(全等三角形形的对角相等) BDE+DEB=CBA CBA=2ACB ACB=DEA BDE=DEA BD=BE(等角对等边) AB+BE=AE,AC=AE,BD=BEAB+BD=AC14

10、.如图,点E是等边ABC内一点,且EA=EB, ABC外一点D满 足BD=AC,且BE平分BDE。 求BDE的度数 解:连接CE, AC=BC,AE=BE,CE为公共边, BCEACE, BCE=ACE=30 又BD=AC=BC,DBE=CBE,BE为公共边, BDEBCE, BDE=BCE=3015.如图,已知在ABC中,AB=BC=CA,E是AD上一点,并且 EB=BD=DE. 求证:BD+DC=AD. A提示:证明ABEBCD即可 E B C16.已知:如图,ABC中,C=90,CMAB于M,AT平分 BAC交CM于D,交BC于T,过D作DEAB交BC于E, 求证:CT=BE证明1: 作

11、DFBC交AB于F,则:AFD=B=ACD, AT为BAC的角平分线,AD为公共边 AFDACD,AF=AC 连接TF AF=AC, AT为BAC的角平分线,AT为公共边 ACTAFT, TFAF,TFCM DFCTBE,TFCD,DEBF 四边形CTFD和四边形BEDF都是平行四边形 CT=DF=BE证明2: 作TFAB于F,则: CDT=ADM=90-DAM=90-DAC=CTD CDT =CTD , CT=CD AT为BAC的角平分线,TFAB,ACTC CT=TF=CD DEBF,TFCD, DEC=B, DCE=FTB 又TF=CD CDETFB, CE=BT CE-TE=BT-TE,CT=BE

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|