ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:271KB ,
文档编号:5761200      下载积分:19 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5761200.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(2023DOC)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文((完整版)椭圆基础练习题.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

(完整版)椭圆基础练习题.doc

1、椭圆的定义与标准方程一选择题(共19小题)1若F1(3,0),F2(3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()ABCD或2一动圆与圆x2+y2+6x+5=0及圆x2+y26x91=0都内切,则动圆圆心的轨迹是()A椭圆B双曲线C抛物线D圆3椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为()A4B5C6D104已知坐标平面上的两点A(1,0)和B(1,0),动点P到A、B两点距离之和为常数2,则动点P的轨迹是()A椭圆B双曲线C抛物线D线段5椭圆上一动点P到两焦点距离之和为()A10B8C6D不确定6已知两点F1(1,0)、F2(1,0),且|F1F2|是|P

2、F1|与|PF2|的等差中项,则动点P的轨迹方程是()ABCD7已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A16B11C8D38设集合A=1,2,3,4,5,a,bA,则方程表示焦点位于y轴上的椭圆()A5个B10个C20个D25个9方程=10,化简的结果是()ABCD10平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是()A1,4B2,6C3,5D3,611设定点F1(0,3),F2(0,3),满足条件|PF1|+|PF2|=6,则动点P的轨迹是()A椭圆B线段C椭圆或线段或不

3、存在D不存在12已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是()A(x0)B(x0)C(x0)D(x0)13已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()ABCD14平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以AB为焦点的椭圆”,那么()A甲是乙成立的充分不必要条件B甲是乙成立的必要不充分条件C甲是乙成立的充要条件D甲是乙成立的非充分非必要条件15如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A3m4BCD16“mn0”是“mx2+ny2=mn为椭圆”的()条件A必要不充

4、分B充分不必要C充要D既不充分又不必要17已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是()A椭圆B双曲线C抛物线D无法确定18已知A(1,0),B(1,0),若点C(x,y)满足=()A6B4C2D与x,y取值有关19在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()ABCD二填空题(共7小题)20方程+=1表示椭圆,则k的取值范围是_21已知A(1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|=_22设P是椭圆上的点若F1、F2是椭圆的两个焦点,则PF1+PF2=_23若kZ,则椭圆的离心率是_24P为椭圆

5、=1上一点,M、N分别是圆(x+3)2+y2=4和(x3)2+y2=1上的点,则|PM|+|PN|的取值范围是_25在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是_26已知Q:(x1)2+y2=16,动M过定点P(1,0)且与Q相切,则M点的轨迹方程是:_参考答案与试题解析一选择题(共19小题)1若F1(3,0),F2(3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()ABCD或解答:解:设点P的坐标为(x,y),|PF1|+|PF2|=10|F1F2|=6,点P的轨迹是以F1、F2为焦点的椭圆,其中 ,故点M的轨迹方程为 ,故选A2一动圆与圆x2+y2

6、+6x+5=0及圆x2+y26x91=0都内切,则动圆圆心的轨迹是()A椭圆B双曲线C抛物线D圆解答:解:x2+y2+6x+5=0配方得:(x+3)2+y2=4;x2+y26x91=0配方得:(x3)2+y2=100;设动圆的半径为r,动圆圆心为P(x,y),因为动圆与圆A:x2+y2+6x+5=0及圆B:x2+y26x91=0都内切,则PA=r2,PB=10rPA+PB=8AB=6因此点的轨迹是焦点为A、B,中心在( 0,0)的椭圆故选A3椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为()A4B5C6D10解答:解:,a=5,由于点P到一个焦点的距离为5,由椭圆的定义知,P到另

7、一个焦点的距离为2a5=5故选B4已知坐标平面上的两点A(1,0)和B(1,0),动点P到A、B两点距离之和为常数2,则动点P的轨迹是()A椭圆B双曲线C抛物线D线段解答:解:由题意可得:A(1,0)、B(1,0)两点之间的距离为2,又因为动点P到A、B两点距离之和为常数2,所以|AB|=|AP|+|AP|,即动点P在线段AB上运动,所以动点P的轨迹是线段故选D5椭圆上一动点P到两焦点距离之和为()A10B8C6D不确定解答:解:根据椭圆的定义,可知动点P到两焦点距离之和为2a=8,故选B6已知两点F1(1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹

8、方程是()ABCD解解:F1(1,0)、F2(1,0),|F1F2|=2,|F1F2|是|PF1|与|PF2|的等差中项,2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,点P在以F1,F2为焦点的椭圆上,2a=4,a=2c=1b2=3,椭圆的方程是故选C7已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A16B11C8D3解答:解:直线交椭圆于点A、B,由椭圆的定义可知:|AF1|+|BF1|+|AB|=4a,|AF1|+|BF1|=165=11,故选B8设集合A=1,2,3,4,5,a,bA,则方程表示焦

9、点位于y轴上的椭圆()A5个B10个C20个D25个解答:解:焦点位于y轴上的椭圆则,ab,当b=2时,a=1;当b=3时,a=1,2;当b=4时,a=1,2,3;当b=5时,a=1,2,3,4;共10个故选B9方程=10,化简的结果是()ABCD解答:解:根据两点间的距离公式可得:表示点P(x,y)与点F1(2,0)的距离,表示点P(x,y)与点F2(2,0)的距离,所以原等式化简为|PF1|+|PF2|=10,因为|F1F2|=210,所以由椭圆的定义可得:点P的轨迹是椭圆,并且a=5,c=2,所以b2=21所以椭圆的方程为:故选D10平面内有一长度为2的线段AB和一动点P,若满足|PA|

10、+|PB|=8,则|PA|的取值范围是()A1,4B2,6C3,5D3,6解答:解:动点P的轨迹是以A,B为左,右焦点,定长2a=8的椭圆 2c=2,c=1,2a=8,a=4 P为椭圆长轴端点时,|PA|分别取最大,最小值 |PA|ac=41=3,|PA|a+c=4+1=5 |PA|的取值范围是:3|PA|5故选C11设定点F1(0,3),F2(0,3),满足条件|PF1|+|PF2|=6,则动点P的轨迹是()A椭圆B线段C椭圆或线段或不存在D不存在解答:解:由题意可得:动点P满足条件|PF1|+|PF2|=6,又因为|F1F2|=6,所以点P的轨迹是线段F1F2故选B12已知ABC的周长为2

11、0,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是()A(x0)B(x0)C(x0)D(x0)解答:解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B13已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()ABCD解答:解:根据椭圆方程可知a=4,b=3,c=e=由椭圆的定义可知P到焦点的距离与P到一条准线的距离之比为离心率故P到一条准线的距离与P到相应焦点的距离之比为=故选D14平面内有两定点A、B及动点P,设命题

12、甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以AB为焦点的椭圆”,那么()A甲是乙成立的充分不必要条件B甲是乙成立的必要不充分条件C甲是乙成立的充要条件D甲是乙成立的非充分非必要条件解答:解:命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以AB为焦点的椭圆当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以AB为焦点的椭圆,一定能够推出|PA|+|PB|是定值,甲是乙成立的必要不充分条件故选B15如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A3m4BCD解答:解

13、:由题意可得:方程表示焦点在y轴上的椭圆,所以4m0,m30并且m34m,解得:故选D16“mn0”是“mx2+ny2=mn为椭圆”的()条件A必要不充分B充分不必要C充要D既不充分又不必要解答:解:当mn0时方程mx2+ny2=mn可化为=1,当n0,m0时方程不是椭圆的方程,故“mn0”是“mx2+ny2=mn为椭圆”的不充分条件;当mx2+ny2=mn为椭圆时,方程可化为=1,则m0,n0,故mn0成立,综合可知“mn0”是“mx2+ny2=mn为椭圆”的必要不充分条件故选A17已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是()A椭圆B双曲线C抛物线D无法确定解答:解

14、:10=|3x+4y+2|,即 ,其几何意义为点M(x,y)到定点(1,2)的距离等于到定直线3x+4y+2=0的距离的,由椭圆的定义,点M的轨迹为以(1,2)为焦点,以直线3x+4y+2=0为准线的椭圆,故选A18已知A(1,0),B(1,0),若点C(x,y)满足=()A6B4C2D与x,y取值有关解答:解:点C(x,y)满足,两边平方,得4(x1)2+4y2=(x4)2,整理得:3x2+4y2=12点C(x,y)满足的方程可化为:所以点C的轨迹是焦点在x轴上的椭圆,满足a2=4,b2=3,得c=因此该椭圆的焦点坐标为A(1,0),B(1,0),根据椭圆的定义,得|AC|+|BC|=2a=

15、4故选B19在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()ABCD解答:解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得,根据椭圆的几何性质,|PF2|ac,故,即a3c,故,即,又e1,故该椭圆离心率的取值范围是故选B二填空题(共7小题)20方程+=1表示椭圆,则k的取值范围是k3解答:解:方程+=1表示椭圆,则,解可得 k3,故答案为k321已知A(1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|=4解答:解:由条件 ,可得 ,即点C(x,y)到点B(1,0)的距离比上到x=4的距离,等于常

16、数 ,按照椭圆的第二定义,点C(x,y)在以点B为焦点,以直线x=4为准线的椭圆上,故 c=1,=,a=2,|AC|+|BC|=2a=4,故答案为:422设P是椭圆上的点若F1、F2是椭圆的两个焦点,则PF1+PF2=10解答:解:椭圆中a2=25,a=5,2a=10P是椭圆上的点,F1、F2是椭圆的两个焦点,根据椭圆的定义,PF1+PF2=2a=10故答案为:1023若kZ,则椭圆的离心率是解答:解:依题意可知解得1k且k1kZ,k=0a=,c=,e=故答案为24P为椭圆=1上一点,M、N分别是圆(x+3)2+y2=4和(x3)2+y2=1上的点,则|PM|+|PN|的取值范围是7,13解答

17、:解:依题意,椭圆的焦点分别是两圆(x+3)2+y2=4和(x3)2+y2=1的圆心,所以(|PM|+|PN|)max=25+3=13,(|PM|+|PN|)min=253=7,则|PM|+|PN|的取值范围是7,13故答案为:7,1325在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是解:解:由椭圆+=1易得椭圆的左准线方程为:x=,右准线方程为:x=P点到左焦点的距离是它到右焦点距离的两倍,则P点到左准线的距离是它到右准线距离的二倍,即x+=2(x)解得:x=故答案为:26已知Q:(x1)2+y2=16,动M过定点P(1,0)且与Q相切,则M点的轨迹方程是:=1解答:解:P(1,0)在Q内,故M与Q内切,记:M(x,y),M的半径是为r,则:|MQ|=4r,又M过点P,|MP|=r,|MQ|=4|MP|,即|MQ|+|MP|=4,可见M点的轨迹是以P、Q为焦点(c=1)的椭圆,a=2b=椭圆方程为:=1故答案为:=1

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|