ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:474KB ,
文档编号:5849178      下载积分:20 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5849178.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(刘殿科)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《二次函数y=a(x-h)2+k的图象和性质(第3课时)》教学设计(初中数学人教版九年级上册).doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《二次函数y=a(x-h)2+k的图象和性质(第3课时)》教学设计(初中数学人教版九年级上册).doc

1、第二十二章 二次函数22.1二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质 教学设计第 3 课时一、教学目标1使学生理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象之间的关系2会确定二次函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标3 利用二次函数y=a(x-h)2+k的图象和性质解决实际问题二、教学重点及难点重点:理解二次函数y=a(x-h)2+k的性质及其图象与y=ax2的图象之间的关系,了解利用二次函数y=a(x-h)2+k的图象和性质解决实际问题难点:正确理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象之间

2、的关系以及二次函数y=a(x-h)2+k的性质,掌握利用二次函数y=a(x-h)2+k的图象和性质解决实际问题三、教学用具多媒体课件,三角板或直尺。四、相关资源复习二次函数y=ax2k图象与性质动画,复习二次函数y=a(xh)2图象与性质动画,二次函数的图象图片,水管喷水动画。五、教学过程【复习提问】你能说出二次函数y=ax2k的性质吗?师生活动:教师提出问题,全班学生回顾,一起回答问题1一般地,抛物线y=ax2k与y=ax2形状相同,位置不同把抛物线y=ax2向上(下)平移,可以得到抛物线y=ax2k平移的方向、距离要根据k的值来决定当k0时,抛物线y=ax2向上平移|k|个单位长度可以得到

3、抛物线y=ax2k;当k0时,抛物线y=ax2向下平移|k|个单位长度可以得到抛物线y=ax2k2抛物线y=ax2k有如下特点:(1)当a0时,开口向上;当a0时,开口向下(2)对称轴是y轴(3)顶点是(0,k)此图片是动画缩略图,此处插入交互动画【知识探究】画二次函数平移的图象,可以对y=ax2图象上下平移得出y=ax2k的图象,通过自主动手,积极探索的方式,观察、分析函数y=ax2k的图象性质.你能说出二次函数y=a(xh)2的性质吗?师生活动:教师提出问题,全班学生回顾,一起回答问题1一般地,抛物线y=a(xh)2与y=ax2形状相同,位置不同把抛物线y=ax2向左(右)平移,可以得到抛

4、物线y=a(xh)2平移的方向、距离要根据h的值来决定当h0时,抛物线y=ax2向右平移|h|个单位长度可以得到抛物线y=a(xh)2;当h0时,抛物线y=ax2向左平移|h|个单位长度可以得到抛物线y=a(xh)22抛物线y=a(xh)2有如下特点:(1)当a0时,开口向上;当a0时,开口向下(2)对称轴是x=h(3)顶点是(h,0)此图片是动画缩略图,此处插入交互动画【数学探究】画二次函数左右平移的图象,可以通过改变参数值,改变函数图象形状,通过平移确定函数的位置,进而研究函数的性质。设计意图:让学生温习已学的知识,巩固上节课的内容,为本节课作铺垫【合作探究】1画出函数的图象,并指出它的开

5、口方向、对称轴和顶点怎样移动抛物线就可以得到抛物线?解:函数的图象如图所示抛物线的开口向下,对称轴是x=1,顶点是(1,1)把抛物线向下平移1个单位长度,再向左平移1个单位长度,就得到抛物线师生活动:组织学生分组讨论,互相交流,让各组代表发言教师巡查,关注学生是否认真参与讨论师生一起完成列表,再由学生画出图象,交流成果教师利用多媒体投影出函数图象并订正2通过上节课的思考与探讨,你能说出抛物线y=a(xh)2k与抛物线y=ax2有什么关系吗?抛物线y=a(xh)2k具有哪些特点?师生活动:小组讨论、交流,师生一起归纳一般地,抛物线y=a(xh)2k与y=ax2形状相同,位置不同把抛物线y=ax2

6、向上(下)向左(右)平移,可以得到抛物线y=a(xh)2k平移的方向、距离要根据h,k的值来决定抛物线y=a(xh)2k有如下特点:(1)当a0时,开口向上;当a0时,开口向下(2)对称轴是x=h(3)顶点是(h,k)此图片是动画缩略图,此处插入交互动画【数学探究】二次函数的平移,可以通过改变参数值,改变函数图象形状,通过平移确定函数的位置,进而研究函数y=a(xh)2k的性质设计意图:通过分析、小组合作探究,引导学生完成对知识的归纳,符合学生的认知规律,同时也培养了学生分析问题和解决问题的能力,完成由实践上升到理论这一认知过程【例题分析】例 要修建一个圆形喷水池,在池中心竖直安装一根水管,在

7、水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?师生活动:学生先思考,尝试解答问题教师引导学生,学生根据点拨在练习本上解答教师巡视,辅导有困难的学生教师引导:以水管与地面交点为原点,原点与水柱落地处所在直线为x轴,水管所在直线为y轴,建立直角坐标系设这段抛物线的解析式为y=a(x-1)2+3(0x3),将(3,0)代入抛物线的解析式求得a值则x=0时的y值即为水管的长解:以水管与地面交点为原点,原点与水柱落地处所在直线为x轴,水管所在直线为y轴,建立直角坐标系如图所示:由于水柱在与池中心的水平距离为1 m处

8、达到最高,高度为3 m,因此,点(1,3)是图中这段抛物线的顶点所以可设这段抛物线的解析式为y=a(x-1)2+3(0x3)由这段抛物线经过点(3,0),可得a(3-1)2+3=0解得a=-因此y=-(x-1)2+3(0x3)当x=0时,y=2.25故水管长为2.25 m总结:应用二次函数解析式y=a(x-h)2+k解决实际问题的一般步骤是:第一步:建立直角坐标系;第二步:设出二次函数的解析式y=a(x-h)2+k,确定自变量的取值范围;第三步:根据已知条件求出a,h,k的值;第四步:令x=0或令y=0或把x,y的具体值代入二次函数的解析式求得所需要求得的值设计意图:通过实际问题的解答,激发学

9、生的学习热情,调动学生的学习兴趣,使学生对二次函数y=a(x-h)2+k的图象和性质的应用有比较充分的感知,从不同的侧面,不同的视角进一步深化对二次函数y=a(x-h)2+k的图象和性质的理解与认识【练习巩固】1对于抛物线y=(x1)23,下列结论:抛物线的开口向下;对称轴为直线x=1;顶点坐标为(1,3);x1时,y随x的增大而减小其中正确结论的个数为()A1B2C3D42如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=2(xh)2k,则下列结论正确的是()Ah0,k0 Bh0,k0 Ch0,k0 Dh0,k03顶点坐标为(2,3),开口方向和大小与抛物线y=x2相同的抛物线的解析式

10、为()Ay=(x2)23 By=(x2)23Cy=(x2)23 Dy=(x2)234若函数y=3k与x轴的一个交点坐标是(2,0),则它与x轴的另一个交点坐标是5已知点A(x1,y1),B(x2,y2)在二次函数y=(x1)21的图象上,若x1x21,则y1y2(填“”“=”或“”)参考答案1C 2A 3C 4(6,0) 5设计意图:通过练习,创设学生活动的机会,及时反馈对知识的掌握情况,并通过练习内化成学生的能力,考查了二次函数y=a(xh)2k的性质和图象的理解和掌握六、课堂小结1一般地,抛物线y=a(xh)2k与y=ax2形状相同,位置不同把抛物线y=ax2向上(下)向左(右)平移,可以

11、得到抛物线y=a(xh)2k平移的方向、距离要根据h,k的值来决定抛物线y=a(xh)2k有如下特点:(1)当a0时,开口向上;当a0时,开口向下(2)对称轴是x=h(3)顶点是(h,k)2应用二次函数解析式y=a(x-h)2+k解决实际问题的一般步骤是:第一步:建立直角坐标系;第二步:设出二次函数的解析式y=a(x-h)2+k,确定自变量的取值范围;第三步:根据已知条件求出a,h,k的值;第四步:令x=0或令y=0或把x,y的具体值代入二次函数的解析式求得所需要求得的值设计意图:师生互动,鼓励学生自主地对二次函数图象的性质规律进行归纳,揭示二次函数的解析式与图象间的关系七、板书设计22.1 二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质(3)1二次函数y=a(xh)2k的图象与性质2抛物线y=a(xh)2k与y=ax2的关系3应用

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|