ImageVerifierCode 换一换
格式:PPTX , 页数:9 ,大小:288.35KB ,
文档编号:5897828      下载积分:15 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-5897828.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(momomo)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(《高数双语》课件section 2-5.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

《高数双语》课件section 2-5.pptx

1、Differential of a Function12Concept of Differential00()()yf xxf x we want to calculate the value of.y In many problems,we need to discuss the relation between()yf x of some functionx and of a dependent variable x,andExample 1where are both constant(,),yaxba b For linear function00()().ya xxbaxba x i

2、s a linear function with respect to y.x Concept of Differential300lim()xyfxx 0()()yfxxx 0()()yfxxxx 0()fxx ()yf x 0 xWe had known that if functionis derivable at ,we haveand thus0 x 0lim()0 xx where and .We multiply both sides of this equalityx by ,0()()fxxox ()()oxxx x 0 x where is an infinitesimal

3、 of higher order than as .y This implies that we can divide the expression ofinto two parts,and we cally as the linear and main part of()ox and as the infinitesimalx of higher order than .4Concept of DifferentialDefinition(Differential 微 分微 分)Suppose that the function 0:()fU xR.If there is a linear

4、function()Lxa x (aR is a constant independent of x),such that 00()()()f xxf xa xox then f is said to be differentiable可微的可微的 at 0 x,and a x is called the differential of f at 0 x.We denote a x as 0()df x or 0 x xdya x .If f is differentiable at every point on the interval I,then f is said to be diff

5、erentiable on I.5Concept of DifferentialTheorem The necessary and sufficient condition for the function 0:()fU xR to be differentiable at 0 x is that f is derivable at 0 x.In this case,00()()df xfx dx .6The geometric meaning of the differentialIt is well known that()yf x is a curve and the derivativ

6、e 0()fx represents the slope of the tangent line to the curve at the point 00(,()P xf x,i.e.tan.Therefore,0()tandyfx dxPNNT .()yf x 0 xPQdyy()ox)xyo 0 xx Tx N()yf x Therefore,function can be approximated by a linear function 000()()()yf xfxxx 0()U x in some.that is,the differential of the functiony=

7、f(x)at x0 is just the increment of thepoint P.000,i.e.()()()().ydyf xf xfxxx ordinate of the tangent to the curve at theIf|is small,x we have7Rules of operations on differentialsSince we have ,it is easy to prove the following formulae,that is()dyfx dx 1.The differentials of elementary functions 122

8、2()0()(sin)cos(cos)sin(tan)sec(cot)csc(sec)sectan(csc)csccot()ln()11(log)(ln)ln11(arcsin)(arccos)11xxxxad Cd xxdxdxxdxdxxdxdxxdxdxxdxdxxxdxdxxxdxd aaadxd ee dxdxdxdxdxxaxdxdxdxxx 22211(arctan)(cot)11dxdxdxdxdxxx 8Rules of operations on differentialsIf()yf u,where u is an independent variable,by the

9、definition of differential,we have ()dyfu du If u is also a differentiable function()ug x of another variable x,then by the chain rule,the differential of the composite function ()yf g x is ()()dyfu g x dx Because()g x dxdu ,we also have()dyfu du and this property is called the invariance of the dif

10、ferential form.2.The differentials of rational operations 2()()()d uvdudvd CuCduuvduudvd uvvduudvdvv 3.The differentials of composite function 9Rules of operations on differentials Find the differential of the functionsin(21).yxFinish.cos(21)2xdxSolution:21uxLet ,then we havecosdyudu 2cos(21)xdxFinish.221(1)1xxdydee 2ln(1).xye Find the differential of the functionBy the invariance of the differential from,we haveSolution:2221xxexdxe 2221()1xxe d xe 2221xxxedxe

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|