《高数双语》课件section 2-5.pptx

上传人(卖家):momomo 文档编号:5897828 上传时间:2023-05-14 格式:PPTX 页数:9 大小:288.35KB
下载 相关 举报
《高数双语》课件section 2-5.pptx_第1页
第1页 / 共9页
《高数双语》课件section 2-5.pptx_第2页
第2页 / 共9页
《高数双语》课件section 2-5.pptx_第3页
第3页 / 共9页
《高数双语》课件section 2-5.pptx_第4页
第4页 / 共9页
《高数双语》课件section 2-5.pptx_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、Differential of a Function12Concept of Differential00()()yf xxf x we want to calculate the value of.y In many problems,we need to discuss the relation between()yf x of some functionx and of a dependent variable x,andExample 1where are both constant(,),yaxba b For linear function00()().ya xxbaxba x i

2、s a linear function with respect to y.x Concept of Differential300lim()xyfxx 0()()yfxxx 0()()yfxxxx 0()fxx ()yf x 0 xWe had known that if functionis derivable at ,we haveand thus0 x 0lim()0 xx where and .We multiply both sides of this equalityx by ,0()()fxxox ()()oxxx x 0 x where is an infinitesimal

3、 of higher order than as .y This implies that we can divide the expression ofinto two parts,and we cally as the linear and main part of()ox and as the infinitesimalx of higher order than .4Concept of DifferentialDefinition(Differential 微 分微 分)Suppose that the function 0:()fU xR.If there is a linear

4、function()Lxa x (aR is a constant independent of x),such that 00()()()f xxf xa xox then f is said to be differentiable可微的可微的 at 0 x,and a x is called the differential of f at 0 x.We denote a x as 0()df x or 0 x xdya x .If f is differentiable at every point on the interval I,then f is said to be diff

5、erentiable on I.5Concept of DifferentialTheorem The necessary and sufficient condition for the function 0:()fU xR to be differentiable at 0 x is that f is derivable at 0 x.In this case,00()()df xfx dx .6The geometric meaning of the differentialIt is well known that()yf x is a curve and the derivativ

6、e 0()fx represents the slope of the tangent line to the curve at the point 00(,()P xf x,i.e.tan.Therefore,0()tandyfx dxPNNT .()yf x 0 xPQdyy()ox)xyo 0 xx Tx N()yf x Therefore,function can be approximated by a linear function 000()()()yf xfxxx 0()U x in some.that is,the differential of the functiony=

7、f(x)at x0 is just the increment of thepoint P.000,i.e.()()()().ydyf xf xfxxx ordinate of the tangent to the curve at theIf|is small,x we have7Rules of operations on differentialsSince we have ,it is easy to prove the following formulae,that is()dyfx dx 1.The differentials of elementary functions 122

8、2()0()(sin)cos(cos)sin(tan)sec(cot)csc(sec)sectan(csc)csccot()ln()11(log)(ln)ln11(arcsin)(arccos)11xxxxad Cd xxdxdxxdxdxxdxdxxdxdxxdxdxxxdxdxxxdxd aaadxd ee dxdxdxdxdxxaxdxdxdxxx 22211(arctan)(cot)11dxdxdxdxdxxx 8Rules of operations on differentialsIf()yf u,where u is an independent variable,by the

9、definition of differential,we have ()dyfu du If u is also a differentiable function()ug x of another variable x,then by the chain rule,the differential of the composite function ()yf g x is ()()dyfu g x dx Because()g x dxdu ,we also have()dyfu du and this property is called the invariance of the dif

10、ferential form.2.The differentials of rational operations 2()()()d uvdudvd CuCduuvduudvd uvvduudvdvv 3.The differentials of composite function 9Rules of operations on differentials Find the differential of the functionsin(21).yxFinish.cos(21)2xdxSolution:21uxLet ,then we havecosdyudu 2cos(21)xdxFinish.221(1)1xxdydee 2ln(1).xye Find the differential of the functionBy the invariance of the differential from,we haveSolution:2221xxexdxe 2221()1xxe d xe 2221xxxedxe

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(《高数双语》课件section 2-5.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|