ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.13MB ,
文档编号:621145      下载积分:1.45 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-621145.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(四川天地人教育)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(专题03 因动点产生的直角三角形问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

专题03 因动点产生的直角三角形问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc

1、 【类型综述】 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并 验根 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三 角形,这样列比例方程比较简便 【方法揭秘】 我们先看三个问题: 1已知线段 AB,以线段 AB 为直角边的直角三角形 ABC 有多少个?顶点 C 的轨迹是什么? 2已知线段 AB,以线段 AB 为斜边的直角三

2、角形 ABC有多少个?顶点 C 的轨迹是什么? 3已知点 A(4,0),如果OAB 是等腰直角三角形,求符合条件的点 B 的坐标 图 1 图 2 图 3 如图 1,点 C 在垂线上,垂足除外如图 2,点 C 在以 AB 为直径的圆上,A、B 两点除外如图 3,以 OA 为边画两个正方形,除了 O、A 两点以外的顶点和正方形对角线的交点,都是符合题意的点 B,共 6 个 如图 4,已知 A(3, 0),B(1,4),如果直角三角形 ABC 的顶点 C 在 y 轴上,求点 C 的坐标 我们可以用几何的方法,作 AB 为直径的圆,快速找到两个符合条件的点 C 如果作 BDy 轴于 D,那么AOCCD

3、B来源:163文库 来源:163文库 设 OCm,那么 34 1 m m 这个方程有两个解,分别对应图中圆与 y 轴的两个交点 【典例分析】来源:163文库 ZXXK 例 1 如图 1,已知抛物线 E1:yx2经过点 A(1,m),以原点为顶点的抛物线 E2经过点 B(2,2),点 A、B 关于 y 轴的对称点分别为点 A、B (1)求 m 的值及抛物线 E2所表示的二次函数的表达式; (2)如图 1,在第一象限内,抛物线 E1上是否存在点 Q,使得以点 Q、B、B为顶点的三角形为直角 三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由; (3)如图 2,P 为第一象限内的抛物线 E1上

4、与点 A 不重合的一点,连结 OP 并延长与抛物线 E2相交于 点 P,求PAA与PBB的面积之比 图 1 图 2 例 2 如图 1, 二次函数 yx2bxc 的图象与 x 轴交于 A(1, 0)、 B(3, 0)两点, 与 y 轴交于点 C, 连结 BC 动 点 P 以每秒 1 个单位长度的速度从点 A 向点 B 运动,动点 Q 以每秒2个单位长度的速度从点 B 向点 C 运 动,P、Q 两点同时出发,连结 PQ,当点 Q 到达点 C 时,P、Q 两点同时停止运动设运动的时间为 t 秒 (1)求二次函数的解析式; (2)如图 1,当BPQ 为直角三角形时,求 t 的值; (3)如图 2,当

5、t2 时,延长 QP 交 y 轴于点 M,在抛物线上是否存在一点 N,使得 PQ 的中点恰为 MN 的中点,若存在,求出点 N 的坐标与 t 的值;若不存在,请说明理由 图 1 图 2 例 3 如图 1,在 RtABC 中,ACB90 ,AB13,CD/AB,点 E 为射线 CD 上一动点(不与点 C 重合) , 联结 AE 交边 BC 于 F,BAE 的平分线交 BC 于点 G (1)当 CE3 时,求 S CEF S CAF 的值; (2)设 CEx,AEy,当 CG2GB 时,求 y 与 x 之间的函数关系式; (3)当 AC5 时,联结 EG,若AEG 为直角三角形,求 BG 的长 图

6、 1 例 4 如图 1,二次函数 ya(x22mx3m2)(其中 a、m 是常数,且 a0,m0)的图像与 x 轴分别交 于 A、 B (点 A 位于点 B 的左侧) , 与 y 轴交于点 C(0,3), 点 D 在二次函数的图像上, CD/AB, 联结 AD 过 点 A 作射线 AE 交二次函数的图像于点 E,AB 平分DAE (1)用含 m 的式子表示 a; (2)求证: AD AE 为定值;来源:163文库 (3)设该二次函数的图像的顶点为 F探索:在 x 轴的负半轴上是否存在点 G,联结 GF,以线段 GF、 AD、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要

7、求的点 G 即可,并用含 m 的代数式表示该点的横坐标;如果不存在,请说明理由 图 1 例 5 如图 1,抛物线 2 13 4 42 yxx与 x 轴交于 A、B 两点(点 B 在点 A 的右侧) ,与 y 轴交于点 C, 连结 BC, 以 BC 为一边, 点 O 为对称中心作菱形 BDEC, 点 P 是 x 轴上的一个动点, 设点 P 的坐标为(m, 0), 过点 P 作 x 轴的垂线 l 交抛物线于点 Q (1)求点 A、B、C 的坐标; (2) 当点 P 在线段 OB 上运动时, 直线 l 分别交 BD、 BC 于点 M、 N 试探究 m 为何值时, 四边形 CQMD 是平行四边形,此时

8、,请判断四边形 CQBM 的形状,并说明理由; (3)当点 P 在线段 EB 上运动时,是否存在点 Q,使BDQ 为直角三角形,若存在,请直接写出点 Q 的坐标;若不存在,请说明理由 图 1 例 6 如图 1,抛物线 2 33 3 84 yxx 与 x 轴交于 A、B 两点(点 A 在点 B 的左侧) ,与 y 轴交于点 C (1)求点 A、B 的坐标; (2) 设 D 为已知抛物线的对称轴上的任意一点, 当ACD 的面积等于ACB 的面积时, 求点 D 的坐标; (3)若直线 l 过点 E(4, 0),M 为直线 l 上的动点,当以 A、B、M 为顶点所作的直角三角形有且只有 三 个时,求直

9、线 l 的解析式 图 1 【变式训练】 1 如图, 点 M 是直线 y=2x+3 上的动点, 过点 M 作 MN 垂直于 x 轴于点 N, y 轴上是否存在点 P, 使得MNP 为等腰直角三角形,则符合条件的点 P 有(提示:直角三角形斜边上的中线等于斜边的一半) ( ) A2 个 B3 个 C4 个 D5 个 2如图,在矩形中,是边上的一个动点,当点 在(不含两点) 上运动时,若是以为斜边的直角三角形,则等于( ) A B 或 C D或 3如图,在ABC 中,AB=2,AO=BO,P 是直线 CO 上的一个动点,AOC=60 ,当PAB 是以 BP 为直 角边的直角三角形时,AP 的长为(

10、) A,1,2 B,2 C,1 D,2来源:163文库 ZXXK 4如图,是的直径,弦, 是弦的中点,若动点 以的速度从 点出 发沿着方向运动,设运动时间为,连结,当是直角三角形时, (s)的值为 A B1 C或 1 D或 1 或 5若 D 点坐标(4,3),点 P 是 x 轴正半轴上的动点,点 Q 是反比例函数 12 (0)yx x 图象上的动点,若 PDQ 为等腰直角三角形,则点 P 的坐标是_ 6如图,长方形 ABCD 中,A=ABC=BCD=D=90 ,AB=CD=6,AD=BC=10,点 E 为射线 AD 上的 一个动点,若ABE 与ABE 关于直线 BE 对称,当ABC 为直角三角

11、形时,AE 的长为_ 7如图,BOC=60 ,点 A 是 BO 延长线上的一点,OA=10cm,动点 P 从点 A 出发沿 AB 以 2cm/s 的速度 移动,动点 Q 从点 O 出发沿 OC 以 1cm/s 的速度移动,如果点 P,Q 同时出发,用 t(s)表示移动的时间, 当 t=_s 时,POQ 是等腰三角形;当 t=_s 时,POQ 是直角三角形 8如图,AB 是O 的直径,弦 BC=6cm,AC=8cm若动点 P 以 2cm/s 的速度从 B 点出发沿着 BA 的方 向运动,点 Q 以 1cm/s 的速度从 A 点出发沿着 AC 的方向运动,当点 P 到达点 A 时,点 Q 也随之停

12、止运 动设运动时间为 t(s),当APQ 是直角三角形时,t 的值为_ 9如图,已知抛物线的对称轴为直线,且抛物线与 轴交于 、 两点,与 轴 交于 点,其中,. (1)若直线经过 、 两点,求直线和抛物线的解析式; (2)在抛物线的对称轴上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标; (3)设点 为抛物线的对称轴上的一个动点,求使为直角三角形的点 的坐标. 10如图所示,已知抛物线经过点 A (2,0) 、 B (4,0) 、 C (0,8) ,抛物线 y a x 2 b x c (a0)与直线 y x 4 交于 B , D 两点 (1)求抛物线的解析式并直接写出 D

13、 点的坐标; (2)点 P 为抛物线上的一个动点,且在直线 BD 下方,试求出 BDP 面积的最大值及此时点 P 的坐标; (3) 点 Q 是线段 BD 上异于 B 、 D 的动点, 过点 Q 作 QF x 轴于点 F , 交抛物线于点 G 当 QDG 为直角三角形时,求点 Q 的坐标 11如图,抛物线 y=ax25ax+c 与坐标轴分别交于点 A,C,E 三点,其中 A(3,0) ,C(0,4) ,点 B 在 x 轴上, AC=BC, 过点 B 作 BDx 轴交抛物线于点 D, 点 M, N 分别是线段 CO, BC 上的动点, 且 CM=BN, 连接 MN,AM,AN (1)求抛物线的解析

14、式及点 D 的坐标; (2)当CMN 是直角三角形时,求点 M 的坐标; (3)试求出 AM+AN 的最小值 12如图所示,已知抛物线 y=ax2+bx+c(a0)经过点 A(2,0) 、B(4,0) 、C(0,8) ,与直线 y=x 4 交于 B,D 两点 (1)求抛物线的解析式并直接写出 D 点的坐标; (2)点 P 为直线 BD 下方抛物线上的一个动点,试求出BDP面积的最大值及此时点 P 的坐标; (3)点 Q 是线段 BD 上异于 B、D 的动点,过点 Q 作 QFx 轴于点 F,交抛物线于点 G,当QDG 为直角 三角形时,直接写出点 Q 的坐标 13如图,抛物线与直线交于 A、B

15、 两点.点 A 的横坐标为3,点 B 在 y 轴上,点 P 是 y 轴 左侧抛物线上的一动点,横坐标为 m,过点 P 作 PCx 轴于 C,交直线 AB 于 D. (1)求抛物线的解析式; (2)当 m 为何值时,; (3)是否存在点 P,使PAD 是直角三角形,若存在,求出点 P 的坐标;若不存在,说明理由. 14 (本小题满分 12 分)已知:直线 1 1 2 yx与y轴交于 A,与x轴交于 D,抛物线 2 1 2 yxbxc与 直线交于 A、E 两点,与x轴交于 B、C 两点,且 B 点坐标为 (1,0) (1)求抛物线的解析式; (2)动点 P 在x轴上移动,当PAE 是直角三角形时,

16、求点 P 的坐标 (3)在抛物线的对称轴上找一点 M,使|AMMC的值最大,求出点 M 的坐标 15如图,抛物线与 x 轴相交于点 A、B,与 y 轴相交于点 C,抛物线的对称轴与 x 轴相 交于点 MP 是抛物线在 x 轴上方的一个动点(点 P、M、C 不在同一条直线上) 分别过点 A、B 作直线 CP 的垂线,垂足分别为 D、E,连接点 MD、ME (1)求点 A,B 的坐标(直接写出结果) ,并证明MDE 是等腰三角形; (2)MDE 能否为等腰直角三角形?若能,求此时点 P 的坐标;若不能,说明理由; (3)若将“P 是抛物线在 x 轴上方的一个动点(点 P、M、C 不在同一条直线上)

17、”改为“P 是抛物线在 x 轴 下方的一个动点”,其他条件不变,MDE 能否为等腰直角三角形?若能,求此时点 P 的坐标(直接写出结 果) ;若不能,说明理由 16如图,直线与抛物线相交于和,点 P 是线段 AB 上异于 A、 B 的动点,过点 P 作轴于点 D,交抛物线于点 C 求抛物线的解析式; 是否存在这样的 P 点,使线段 PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; 连接 AC,直接写出为直角三角形时点 P 的坐标 y x O D E A B C 17如图,抛物线 y=x2x+与 x 轴交于 A、B 两点(点 A 在点 B 左侧) ,与 y 轴交于点 C (1)

18、求该抛物线的对称轴和线段 AB 的长; (2)如图 1,已知点 D(0,) ,点 E 是直线 AC 上访抛物线上的一动点,求AED 的面积的最大值; (3)如图 2,点 G 是线段 AB 上的一动点,点 H 在第一象限,ACGH,AC=GH,ACG 与ACG 关于 直线 CG 对称,是否存在点 G,使得ACH 是直角三角形?若存在,请直接写出点 G 的坐标;若不存在, 请说明理由 18如图,在矩形 OABC 中,点 O 为原点,点 A 的坐标为(0,8) ,点 C 的坐标为(6,0) 抛物线 y x2+bx+c 经过点 A、C,与 AB 交于点 D (1)求抛物线的函数解析式; (2)点 P

19、为线段 BC 上一个动点(不与点 C 重合) ,点 Q 为线段 AC 上一个动点,AQCP,连接 PQ,设 CPm,CPQ 的面积为 S 求 S 关于 m 的函数表达式; 当 S 最大时,在抛物线 y x2+bx+c 的对称轴 l 上,若存在点 F,使DFQ 为直角三角形,请直接写出 所有符合条件的点 F 的坐标;若不存在,请说明理由 19已知,是边长的等边三角形,动点 以的速度从点 出发,沿线段向点 运动请分 别解决下面四种情况: ( )如图 ,设点 的运动时间为,那么_时,是直角三角形; ( )如图 ,若另一动点 从点 出发,沿线段向点 运动,如果动点 、 都以的速度同时出发设 运动时间为

20、,那么 为何值时,是直角三角形? ( )如图 ,若另一动点 从点 出发,沿射线方向运动连接交于 如果动点 、 都以的 速度同时出发设运动时间为,那么 为何值时,是等腰三角形? ( )如图 ,若另一动点 从点 出发,沿射线方向运动,连接交于 ,连接如果动点 、 都 以的速度同时出发请你猜想:在点 、 的运动过程中,和的面积有什么关系?并说明 理由 20如图,在平面直角坐标系中,过点B(6,0)的直线 AB 与直线 OA 相交于点 A(4,2) ,动点 M 在 y 轴上运动 (1)求直线 AB 的函数解析式; (2)动点 M 在 y 轴上运动,使 MA+MB 的值最小,求点 M 的坐标; (3)在 y 轴的负半轴上是否存在点 M,使ABM 是以 AB 为直角边的直角三角形?如果存在,求出点 M 的坐标;如果不存在,说明理由

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|