1、 1 蚌埠市 2017 -2018学年度第二学期期末学业水平监测 高一数学 第 I卷(选择题,共 60分) 一、选择题:本大题共 12小题,每小题 5分,共 60分,在每小题给出的 A, B, C, D的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卡上 1已知实数 a, b, c 满足 a0,则关于 x的不等式( m -x)( n+x) 0 的解集是 A.x| -nm C x| -m n 8设 x, y满足约束条件 ,则 z=x -y的取值范围是 2 A. -3,0 B.-3,2 C.0,2 D.0,3 9某企业里工人的工资与其生产利润满足线性相关关系,现统计了 1
2、00名工人的工资 y(元)与其生产利润 x(千元)的数据,建立了 y关于 x的回归直线方程为 = 80x +50,则下列说法正确的是 A工人甲的生产利润为 1000元,则甲的 工资为 130元 B生产利润提高 1000元,则预计工资约提高 80 元 C生产利润提高 1000元,则预计工资约提高 130元 D工人乙的工资为 210元,则乙的生产利润为 2000元 10.阅读右边的程序框图,运行相应的程序,则输出 S的值为 A 8 B 18 C 26 1.80 11.从 3双不同的鞋子中任取 2只,则取出的 2只不能成双的概率为 A B C D 12.定义函数 f(x)如下表,数列 an满足 an
3、+1=f(an), n N*,若 a1=2,则 al+ a2+a3+? +a2018 = A. 7042 B.7058 C.7063 D.7262 第卷(非选择题,共 90分) 二、填空题:本大题共 4小题,每小题 5分,共 20 分,请将答案直接填在答题卡上 13已知 ,则 14.设 al,记 m=loga(a2+1) n=loga(a+1), p=loga(2a),则 m, n, p的大小关系是 _ _( 用“ ”连接) 15在 ABC中, B= , BC边上的高等于 BC, 则 sinA= 16.已知首项为 2 的数列 an的前 n 项和为 Sn,且 Sn+1-2(2an+1)=0(n
4、N*),若数列 bn满足+1(n N*),则数列 bn中最大项的值为 . 三、解答题:本大题共 6小题,共 70 分解答应写出文字说明、证明过程或演算步骤 17(本小题满分 10 分) 3 已知 f (x)=2 sinxcosx +2cos2x -1. (1)求 f(x)的最小正周期; (2)求 f(x)在区间 上的最大值和最小值 18.(本小题满分 12分) 掷甲,乙两颗骰子,甲 出现的点数为 x,乙出现的点数为 y若令事件 A为 |x -y| 1,事件B为 xy x2 +1,求 P(A)+P(B)的值,并判断事件 A和事件 B是否为互斥事件 19.(本小题满分 12分) 某校高一年级学生全
5、部参加了体育科目的达标测试,现从中随机抽取 40名学生的测试成绩,整理数据并按分数段 40, 50), 50, 60), 60, 70), 70, 80), 80, 90), 90, 100进行分组已知测试分数均为整数,现用每组区间的中点值代替该组中的每个数据,则得到体育成绩的折线图如下: (1)若体育成绩大于或等 于 70分的学生为“体育良好”,已知该校高一年级有 1000名学生,试估计该校高一年级学生“体育良好”的人数; (2)用样本估计总体的思想,试估计该校高一年级学生达标测试的平均分; (3)假设甲、乙、丙三人的体育成绩分别 a, b, c,且 a 60, 70), b 70, 80)
6、, c 80,90),当三人的体育成绩方差 s2最小时,写出 a, b, c的所有可能取值(不要求证明) 20.(本小题满分 12分) 在 ABC中,角 A, B, C的对边分别为 a, b, c,且 acosB=( 3c-b) cosA. (1)求 sinA; (2)若 a=2 ,且 ABC的面积为 ,求 b+c的值 21.(本小题满分 12分) 某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块 1800 平方米的矩形地块,4 中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为 2米,如图所示,池塘所占面积为 S平方米,其中 a: b=1: 2 (1)试用 x, y表示 S; (2)若要使 S最大,则 x, y的值分别为多少? 22(本小题满分 12 分) 已知数列 an满足 a1=1 (1)若 |an-an-1|=1( n N*且 n 2),数 列 a2n-1为递增数列,求数列 an的通项公式; (2)若 |an-an-1|=n( n N*且 n 2),数列 a2n-1为递增数列,数列 a2n为递减数列,且 a1 a2,求数列 an的通项公式 5 6 7