ImageVerifierCode 换一换
格式:PDF , 页数:19 ,大小:692.79KB ,
文档编号:810711      下载积分:3 文币
快捷下载
登录下载
邮箱/手机:
温馨提示:
系统将以此处填写的邮箱或者手机号生成账号和密码,方便再次下载。 如填写123,账号和密码都是123。
支付方式: 支付宝    微信支付   
验证码:   换一换

优惠套餐
 

温馨提示:若手机下载失败,请复制以下地址【https://www.163wenku.com/d-810711.html】到电脑浏览器->登陆(账号密码均为手机号或邮箱;不要扫码登陆)->重新下载(不再收费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  
下载须知

1: 试题类文档的标题没说有答案,则无答案;主观题也可能无答案。PPT的音视频可能无法播放。 请谨慎下单,一旦售出,概不退换。
2: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
3: 本文为用户(副主任)主动上传,所有收益归该用户。163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

1,本文(山东省青岛市2019-2020学年高一上期中数学试卷及答案.pdf)为本站会员(副主任)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!

山东省青岛市2019-2020学年高一上期中数学试卷及答案.pdf

1、1 2019-2020 学年上学期高一年级期中 数学 学年上学期高一年级期中 数学 一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 1.已知命题:pnN , 2 1 1 2 nn,则命题p的否定 p 为() A. nN , 2 1 1 2 nnB. nN , 2 1 1 2 nn C. nN , 2 1 1 2 nnD. nN , 2 1 1 2 nn 2.由实数 x,x,|x|, 2 x , 33 x 组成的集合中,元素最多有() A. 2 个B.

2、 3 个C. 4 个 D. 5 个 3.设 , x y是两个实数,则“, x y中至少有一个数大于 1”是“ 22 2xy+”成立的( ) A. 充分非必要条件B. 必要非充分条件 C. 充分必要条件D. 既非充分又非必要条件 4.已知 a,b,cR,那么下列命题中正确的是() A.若 ab,则 ac2bc2 B. 若 ab cc ,则 ab C. 若 a3b3且 abb2且 ab0,则 11 ab 5.已知210a ,则关于x的不等式 22 450 xaxa 的解集是 () A.|5x xa或xa B.|5x xa或xa C.5xaxa D.5x axa 6.若函数( )yf x的定义域是0

3、,2,则函数 (21) ( ) 1 fx g x x 的定义域是() A. 3 1, 2 B. 3 1, 2 C.1,3D.1,3 2 7.已知函数 2 45yxx在闭区间0,m上有最大值 5, 最小值 1, 则m得取值范围是 ( ) A.0,1B.1,2C.0,2D.2,4 8.已知函数 f(x),g(x)分别是定义在 R 上的偶函数和奇函数,且 f(x)-g(x)=x3+x2+2,则 f(1)+g(1)=() A. -2B. -1C. 1D. 2 9.函数 2 ( )(41)2f xxax ,在-1,2上不单调,则实数a的取值范围是() A. 1 (,) 4 B. 1 5 - 4 4 (,

4、)C. 1 5 - 4 4 ,D. 5 ( ,) 4 10.已知函数 f(x)是定义域为 R 的奇函数,且 f(x)f(4x) ,当2x0 时,f(x) 1 x , 则 f( 7 2 )() A. 2B. 2 7 C. 2 7 D. 2 11.设集合1Am,9,, 2 =Bm ,1, 若ABB, 则满足条件的实数m的值是 A. 1 或 0B. 1,0 或 3C. 0,3 或-3D. 0,1 或 -3 12.若幂函数 m n yx ( * ,m nN且 ,m n互素)的图象如下图所示,则下列说法中正确的是 _. m、n 是奇数且1 m n m 是偶数,n 是奇数,且1 m n m 是偶数,n 是

5、奇数,且1 m n 3 m、n 是偶数,且1 m n 二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 5 分共分共 20 分分 13.若“2x ”是“xa”的充分不必要条件,则 a 的最小值是_ 14.已知 f(x) 2 1,1 1,1 xx xx ,若 f(x)1,则 x_ 15.已知实数0a ,0b ,且 11 1 ab ,则 32 11ab 的最小值为_. 16.已知函数 2 ( )2(1)f xxaxb a的定义域和值域都为1, a,则b _. 三、解答题:本大题共三、解答题:本大题共 6 大题,共大题,共 70 分, (解答应写出文字说明、证明过程或 演算步骤

6、 ) 分, (解答应写出文字说明、证明过程或 演算步骤 ) 17.已知集合2331Axaxa,集合54Bxx . (1)若AB,求实数a的取值范围; (2)是否存在实数a,使得AB?若存在,求出a的值;若不存在,请说明理由. 18.已知 Px|2x10,非空集合 Sx|1mx1+m (1)若 xP 是 xS 的必要条件,求 m 的取值范围; (2)是否存在实数 m,使 xP 是 xS 的充要条件 19.(1)若关于 x 的不等式 ax23x+20(aR)的解集为x|x1 或 xb,求 a,b 的值; (2)解关于 x 的不等式 ax23x+25ax(aR) 4 20.二次函数 2 210g x

7、mxmxnm在区间0,3上有最大值 4,最小值 0. (1)求函数 g x的解析式; (2)设 2g xx f x x ,若 0f xkx在 1 ,8 8 x 时恒成立,求k的范围. 21.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收 入, 政府计划共投入 72 万元, 全部用于甲、 乙两个合作社, 每个合作社至少要投入 15 万元, 其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益 M、养鸡的收 益 N 与投入 a(单位:万元)满足 1425,1536, 20 249,3657 aa MNa a 设甲合作 社的投入为 x(单位:万元) ,两

8、个合作社的总收益为 f(x) (单位:万元) (1)当甲合作社的投入为 25 万元时,求两个合作社的总收益; (2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大? 22.设函数( )(yf x xR且0)x 对任意非零实数 12 ,x x恒有 1212 ()()()f x xf xf x, 且 对任意1x ,( )0f x (1)求( 1)f 及(1)f的值; (2)判断函数 ( )f x的奇偶性; (3)求不等式 3 ( )()0 2 f xf x的解集 5 2019-2020 学年上学期高一年级期中 数学 学年上学期高一年级期中 数学 一、选择题:本大题共一、选择题:本大题共 12

9、 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 分,在每小题给出的四个选项中,只 有一项是符合题目要求的 1.已知命题:pnN , 2 1 1 2 nn,则命题p的否定 p 为() A. nN , 2 1 1 2 nnB. nN , 2 1 1 2 nn C. nN , 2 1 1 2 nnD. nN , 2 1 1 2 nn 【答案】A 【解析】 【分析】 根据全程命题的否定是特称命题,这一规则书写即可. 【详解】 全称命题“ nN , 2 1 1 2 nn”的否定为特称命题, 故命题的否定为“ nN , 2 1 1 2 nn”. 故答案为 A. 【

10、点睛】这个题目考查了全称命题的否定的写法,换量词否结论,不变条件. 2.由实数 x,x,|x|, 2 x , 33 x 组成的集合中,元素最多有() A. 2 个B. 3 个C. 4 个 D. 5 个 【答案】A 【解析】 【分析】 根据绝对值的定义和开平方、立方的方法,应对x分0,0,0 xxx三种情况分类讨论,根 据讨论结果可得答案. 【详解】当0 x 时, 323 ,0 xxxxx ,此时集合共有 2 个元素, 当0 x 时, 323 0 xxxxx ,此时集合共有 1 个元素, 当0 x 时, 323 0 xxxx ,此时集合共有 2 个元素, 6 综上所述,此集合最多有 2 个元素.

11、 故选:A. 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用 分类讨论思想,对 x 分三种情况进行讨论,是基础题. 3.设 , x y是两个实数,则“, x y中至少有一个数大于 1”是“ 22 2xy+”成立的( ) A. 充分非必要条件B. 必要非充分条件 C. 充分必要条件D. 既非充分又非必要条件 【答案】D 【解析】 【分析】 【详解】因为 , x y是两个实数,比如,x=1.1,y=1/2,则, x y中至少有一个数大于 1”不能推出 22 2xy+ 反之 x=-2,y=-1, 22 2xy+成立不能推出“ , x y中至少有一个数大于 1”, 因

12、此“ , x y中至少有一个数大于 1”是“ 22 2xy+”成立既非必要又非充分条件, 故选:D. 4.已知 a,b,cR,那么下列命题中正确的是() A. 若 ab,则 ac2bc2 B. 若 ab cc ,则 ab C. 若 a3b3且 abb2且 ab0,则 11 ab 【答案】C 【解析】 【分析】 根据不等式的性质,对 A、B、C、D 四个选项通过举反例进行一一验证 【详解】A若 ab,则 ac2bc2(错) ,若 c=0,则 A 不成立; B若 ab cc ,则 ab(错) ,若 c0,则 B 不成立; 7 C若 a3b3且 ab0,则 11 ab (对) ,若 a3b3且 ab

13、0,则 0 0 a b D若 a2b2且 ab0,则 11 ab (错) ,若 0 0 a b ,则 D 不成立 故选 C 【点睛】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单两 个式子比较大小的常用方法有:做差和 0 比,作商和 1 比,或者直接利用不等式的性质得到 大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系. 5.已知210a ,则关于x的不等式 22 450 xaxa 的解集是 () A.|5x xa或xa B.|5x xa或xa C.5xaxa D.5x axa 【答案】A 【解析】 【分析】 根据210a 求得a的范围,从而可得a 与5a

14、大小关系;由一元二次不等式的解法可求 得结果. 【详解】210a 1 2 a 5aa 由 22 4505xaxaxaxa得:5xa或xa 不等式 22 450 xaxa 的解集为5x xa或xa 故选A 【点睛】 本题考查含参数的一元二次不等式的求解, 关键是能够通过参数的范围确定一元二 次方程两根的大小关系. 6.若函数( )yf x的定义域是0,2,则函数 (21) ( ) 1 fx g x x 的定义域是() A. 3 1, 2 B. 3 1, 2 C.1,3D.1,3 【答案】A 【解析】 8 【分析】 根据 f(x)的定义域、二次根式有意义的条件,及分母不能为 0,可判断 g(x)的

15、定义域. 【详解】已知函数 yf x的定义域是 0,2, 可得 g(x)中的f(2x-1) ,02x-12,解得 1 2 x 3 2 , 再由 10 x 成立,解得 x1, 综上,得 1x 3 2 ,故选 A. 【点睛】 本题考查了复合函数的定义域, 对在同一对应法则 f 下的量“x”“x+a”“x-a”所要满足 的范围是一样的;即若 f(x)中 mxn,则 f(x+a)中,mx+a,即(3)(1)0axx. 当0a 时,化为10 x 解得1x ,其解集为, 1 , 当0a 或3a 时, 3 1 a 解得1x 或 3 x a ,其解集为 3 , 1, a , 当30a 时, 3 1 a ,解得

16、1x 或 3 x a ,其解集为 3 ,1, a , 当3a 时,解集为. 综上所述当0a ,解集为, 1 ;当0a 或3a 时,解集为 3 , 1, a ;当 30a 时,解集为 3 ,1, a ;当3a 时,解集为. 【点睛】本题主要考查一元二次不等式的解法和分类讨论思想的应用,是中档题. 20.二次函数 2 210g xmxmxnm在区间0,3上有最大值 4,最小值 0. (1)求函数 g x的解析式; (2)设 2g xx f x x ,若 0f xkx在 1 ,8 8 x 时恒成立,求k的范围. 【答案】 (1)g(x)x22x+1; (2)33,+) 【解析】 【分析】 (1)根据

17、二次函数的性质讨论对称轴,即可求解最值,可得解析式 (2)求解 f(x)的解析式,f(x)kx0 在 x 1 8 ,8,分离参数即可求解 【详解】 (1)g(x)mx22mx+n+1(m0) 其对称轴 x1,x0,3上, 当 x1 时,f(x)取得最小值为m+n+10, 当 x3 时,f(x)取得最大值为 3m+n+14, 由解得:m1,n0 故得函数 g(x)的解析式为:g(x)x22x+1 17 (2)由 f(x) 2 241g xxxx xx 当 x 1 8 ,8时,f(x)kx0 恒成立, 即 x24x+1kx20 恒成立, x24x+1kx2 2 11 14( ) xx k 设 1

18、t x ,则 t 1 8 ,8 可得:14t+t2(t2)23k 当 t8 时, (14t+t2)max33 故得 k 的取值范围是33,+) 【点睛】本题主要考查一元二次函数最值的求解,以及不等式恒成立问题,属于中档题 21.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收 入, 政府计划共投入 72 万元, 全部用于甲、 乙两个合作社, 每个合作社至少要投入 15 万元, 其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益 M、养鸡的收 益 N 与投入 a(单位:万元)满足 1425,1536, 20 249,3657 aa MNa a 设甲合

19、作 社的投入为 x(单位:万元) ,两个合作社的总收益为 f(x) (单位:万元) (1)当甲合作社的投入为 25 万元时,求两个合作社的总收益; (2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大? 【答案】(1) 总收益为88.5万元;(2) 该公司在甲合作社投人16万元,在乙合作社投人56万 元,总收益最大,最大总收益为89万元 【解析】 【分析】 (1)根据题意,当甲合作社的投入为 25 万元时,乙合作社的投入为 47 万元,分别代入 收益与投入的函数式,最后求和即可; (2)首先确定函数的定义域,然后结合分段函数的解析式分类讨论确定最大收益的安排方法 即可得出答案. 【详解】

20、(1)当甲合作社投入为25万元时,乙合作社投入为47万元, 18 此时两个合作社的总收益为: 1 254 2525472088.5 2 f(万元). (2)甲合作社的投入为x万元1557x,则乙合作社的投人为72x万元, 当1536x,则36 7257x, 11 4257220481 22 f xxxxx , 令t x ,得 156t , 则总收益为 2 2 11 481489 22 g tttt , 显然当4t 时, max 8916g tf, 即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元. 当3657x时,则157236x, 11 ( )49(72)20105 2

21、2 f xxx , 显然 ( )f x在(36,57上单调递减,所以( )(36)87f xf , 即此时甲、乙总收益小于87万元.8987, 该公司在甲合作社投人16万元,在乙合作社投人56万元, 总收益最大,最大总收益为89万元. 【点睛】本题主要考查利用函数模型解决实际问题,是中档题. 22.设函数( )(yf x xR且0)x 对任意非零实数 12 ,x x恒有 1212 ()()()f x xf xf x, 且 对任意1x ,( )0f x (1)求( 1)f 及(1)f的值; (2)判断函数 ( )f x的奇偶性; (3)求不等式 3 ( )()0 2 f xf x的解集 【答案】

22、 (1)(1) ( 1)0ff; (2)偶函数; (3) 1 (,2,) 2 . 【解析】 【分析】 (1)通过赋值即可求得; (2)取,不难判断奇偶性; (3)根据函数的奇偶性,结合单调性即可证明. 【详解】 (1)对任意非零实数恒有, 19 令,代入可得, 又令,代入并利用,可得 (2)取,代入,得, 又函数的定义域为, 函数是偶函数 (3)函数 f(x)在(0,+)上为单调递减函数,证明如下: 任取且,则,由题设有 2 1 0 x f x , , 222 2111111 111 =0 xxx f xf xfxf xfxf xf xf xxx f(x2)f(x1)即函数 f(x)在上为单调递减函数; 由(2)函数 f(x)是偶函数, 333 01|1 222 f xfxfx xfx x 解得: 1 2 2 xx或 解集为 1 ,2, 2

侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|