-
全部
- 《乘法结合律和交换律》.ppt--点击预览
- 《乘法结合律和交换律》学情分析.doc--点击预览
- 《乘法结合律和交换律》效果分析.doc--点击预览
- 《乘法结合律和交换律》教学设计.doc--点击预览
- 《乘法结合律和交换律》教材分析.doc--点击预览
- 《乘法结合律和交换律》测评练习.doc--点击预览
- 《乘法结合律和交换律》观评记录.doc--点击预览
- 《乘法结合律和交换律》课件设计.ppt--点击预览
- 《乘法结合律和交换律》课后反思.doc--点击预览
- 《乘法结合律和交换律》课堂实录.mp4
- 《乘法结合律和交换律》课标分析.doc--点击预览
- 教案f019c.doc--点击预览
文件预览区
|
|
资源描述
一共购进了多少千克花土?一共购进了多少千克花肥?观察仿写: (225)20 = 2(2520 ) (58)10 = 5(810 ) 观察这两组等式,你能发现什么?并试着写出这样的算式。大胆尝试: 根据加法结合律在小组内试着说一下你们的新发现?并试着用你们喜欢的方式把这个规律表示出来。 三个数相加,先把前两个数相加或者先把后两个数相加,和不变。这就是加法结合律。 三个数相乘,先把前两个数相乘或者先把后两个数相乘,积不变。这就是乘法结合律。用字母表示为:(a b) c=a (b c)验证交流: 请自己举例验证,小组内交流你发现的规律,并想办法用简洁的方法表示出来。 交换两个因数的位置,积不变。这叫做乘法交换律。 用字母表示为:a b=b a我知道:25=1045=2065=3085=40 254=100258=200 1258=1000 拓展应用怎样简便就怎样计算怎样简便就怎样计算: 1、 2352 92582、 45125 ( 1257)83、 12524 1225 =23(52) =2310 =230 =9(258)=9200=1800=51 (254)=51100 =5100 =(1258)7=10007=7000 =125(83) =(1258)3 =10003 =3000 =(34)25 =3(425)=3100=300拓展应用火火火眼金睛判对错:眼金睛判对错:眼金睛判对错:;火眼金睛判对错:1、xy=yx, 应用的是乘法结合律。( )2、77(88a)=(7788) a ( )3、21353=(25)313 ( )4、800425=800(425) ( )火眼金睛判对错: 通过这节课的学习,你有什么收获? 1【学情分析学情分析】青岛版小学数学四年级上册乘法结合律和交换律乘法结合律和交换律本节课是青岛版小学数学四年级上册的内容,属于“数与代数”领域中的数的运算部分。本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石” 。本节课是学生掌握了四则混合运算顺序的基础上,在学习了加法结合律和交换律之后进一步学习的运算律。从一年级开始,学生就在加法的计算和验算中接触过加法交换律这方面的知识,有较多的感性认识,这也是学生学习加法交换律和结合律的基础。从二年级学生在乘法的计算和验算中接触过乘法交换律,积累了很多的感性认识,而加法结合律、交换律又是这数学大厦基石中的基石,它与乘法结合律、交换律无论在形式上还是方法上都存在相通、相似的地方。加法结合律和交换律的学习方法和学习活动也为学生学习乘法结合律和交换律的学习奠定了很好的基础,加法运算律的学习方法及活动可以迁移到本节课的学习中,迁移会有效促进学生的主动学习,促进学生对新知的理解掌握及灵活运用,提高课堂效果。因为乘法结合律和交换律的学习内容不是特别复杂,学生在以前的学习过程中都有过浅显的认识,积累了一定的活动经验,只是没有明确的概括,本节课的教学很大程度上是要将学生以前比较零散的感性认识经过整理、明晰后上升为理性认识,因此,学生学起来比较容易。同时,2四年级的学生学习的有意性、自控性、思维能力明显增强,所以,教学中要充分发挥学生的主体作用,努力让每个学生自主参与到探究规律的学习活动中去。1【效果分析效果分析】青岛版小学数学四年级上册乘法结合律和交换律乘法结合律和交换律在这节课的教学过程中,学生的思维始终保持着高度的活跃性,提出问题、分析问题、解决问题的能力都得到了发展。本节课学生参与了四个阶段的学习活动,参与率达到 100%,对知识的掌握也达到了 98%以上。一节课结束之后,通过反思我认为在本课的教学中,有以下环节收到很好的效果:1、情境导入后,学生对提出的问题用两种方法解决, (225)20、2(2520) ,问学生都对吗?然后找出相同与不同的地方,最后列成一个等式。通过观察两组等式,初步感知乘法结合律。因为加法运算律与乘法运算律在实质上没有多大的内在联系,加法交换律与乘法交换律、加法结合律与乘法结合律只不过是词不同,我在学生理解感知乘法结合律的基础上,充分运用了知识迁移的方法,让学生根据加法结合律总结出乘法结合律,用旧知推理出新知,找出知识间的生长点,很自然地过渡到新知乘法运算律。 2、教学中注重了新旧知识的连接。比如在归纳出乘法交换律后,我紧接着就问:“在以前学习中,哪些地方用过它?”通过这样一个小环节设计,进一步促进学生对乘法交换律的理解,并让生体会到乘法交换律实际就在我们身边。 3、教学中我注重了举例、观察、对比。让学生通过举例、经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出乘法运2算律。整个过程中,教师注重了学生的整体发展,让每一个学生都参与学习的全过程,体会到了学习方式的多样化。 4、鉴于这是一堂计算课,在学生经历“发现关系揭示规律字母表达”过程之后,进入“应用巩固”阶段时,特意设计 3 组有代表性的用简便方法计算的计算题,让所有的学生都能学以致用、有所收获。为了使学生灵活使用乘法结合律,防止学生的思维定势,还在判断练习中设计不能利用乘法结合律的乘除混合计算,让学生判断能否简算,从而培养学生具体问题具体分析的思想,也很好地提醒了大家在运用运算律时所要注意的问题,很有效的巩固了本节课的知识。总之,本节课的教学目标达成度高,学生运用已有的经验,经历乘法交换律和结合律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,在理解运算律含义的基础上应用运算律,使一些计算简便。1【教学设计教学设计】青岛版小学数学四年级上册 乘法结合律和交换律乘法结合律和交换律教学目标:1、使学生经历乘法结合律和交换律的过程,发现结合律和交换律,并能用字母表示,初步感知乘法运算律的价值。2、在探索运算律的过程中,发展学生的分析、比较、概括能力,培养学生的符号感。3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心。课型:新授课教学重点:经历探索乘法交换律、乘法结合律的过程。教学难点:能运用乘法交换律、结合律进行简便运算。教学准备:多媒体课件教学流程:一、情境导入:我们一起欣赏校园美景。(课件显示)花开了,树也绿了。为了让花儿更红,校园更美,老师购进了一些花土和花肥。(课件显示:情境图)仔细观察,根据已经告诉我们的数学信息,你能提出哪些数学问题?2(一)提出数学问题,分工解决。(二)找出不同的列式展示交流。1、一共购进了多少千克花土?我发现为解决同一个问题,同学们出现了两种算法,他们都对吗?展示:(225)20 2(2520 )2、观察这两种算法,谁能试着说一下他们的相同与不同的地方?既然这两个算式的结果相等,我们可以用等号把这两个算式连起来。(225)20 = 2(2520 )接下来看第二个问题:一共购进了多少千克花肥?也出现了两种算法,谁能说一下他们相同与不同的地方?既然这两个算式的结果也相等,我们也可以用等号把这两个算式连起来。(58)10 = 5(810 )二、新课3(一)观察仿写:观察这两组等式,你能发现什么?并试着写出这样的算式。学生交流,师板书等式大家说的这些算式左右都相等吗?赶快验证一下吧。(二)大胆尝试:观察上面几组等式,你能根据加法结合律在小组内试着说一下你们的新发现?并试着用你们喜欢的方式把这个规律表示出来。小组代表交流、投影显示学生不同的表示方法。课件显示:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。这是我们今天学习的第一个内容。板书:乘法结合律用字母表示,这也是习惯上常用的方法 :(ab)c=a(bc)我们知道加法有结合律还有交换律,大家大胆猜测一下,乘法会不会也有交换律呢?根据你的经验与理解,它会是什么样子?(三)验证交流:真的是这样吗?请自己举例验证,同桌交流你发现的规律,并想办法用简洁的方法表示出来。找生展示交流。师总结,我们一起读一下:(课件显示):交换两个因数的位置,积不变。这叫做乘法交换律。习惯上,用小写字母表示乘法交换律:ab=ba4这是今天学习的第二个内容,板书:交换律知道它在数学学习中有什么应用吗?乘法交换律不仅可以用在验算中,它还常常与结合律一起运用,使乘法计算简便。通常当算式中出现因数 5 时,我们会让 2、4、6、8 与5 结合先算,得出整十数再与第三个数相乘;当算式中出现因数 25 时,我们会让 4、8 与 25 结合先算,得出整百数再与第三个数相乘;当算式中出现因数 125 时,我们马上想到与 8 结合先算,得出整千数再与第三个数相乘。说了这么多,有信心小试一下?3、拓展应用:(一)怎样简便就怎样计算1、 2352 92582、 45125 ( 1257)83、 12524 1225(二)火眼金睛辨对错。1、xy=yx, 应用的是乘法结合律。( )2、77(88a)=(7788) a ( )3、21353=(25)313 ( )4、800425=800(425) ( )为什么错了?要注意什么?四、课堂小结: 一节课的时间马上就要结束了,说一下你有什么收获?5祝贺大家在短短一节课的时间里,有了这么多的收获。相信大家一定能利用本节课学习的知识更灵活的解决生活中的数学问题。1 【教材分析教材分析】青岛版小学数学四年级上册 乘法结合律和交换律乘法结合律和交换律本节课是青岛版小学数学四年级上册第三单元第二信息窗的内容,属于“数与代数”领域中的数的运算部分。本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。本节课是学生掌握了四则混合运算顺序的基础上,在学习了加法交换律和结合律之后进一步学习的运算律。而加法交换律、结合律又是这数学大厦基石中的基石,它与乘法交换律、结合律无论在形式上还是方法上都存在相通、相似的地方。教材将两个内容编排在一起,也是因为其运算律内容的编排结构基本一致,即观察算式-仿写算式-解释规律-应用规律,经历乘法运算律的发现过程,使学生在自我探究与交流中对运算律的认识由感性逐步发展到理性,使学生在理解运算律含义的基础上应用运算律,使一些计算更加简便。教材呈现了“购买花土和花肥”的相关情境,学生通过提出数学问,运用已有的经验,从实际问题的解答引入,让学生通过观察、仿写、解释和表述的学习活动,自己发现问题、提出问题、归纳和总结规律,积累合情推理的数学活动经验,提升思维能力。教学时要注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。2本节课的教学目标为:1、使学生经历乘法结合律和交换律的过程,发现结合律和交换律,并能用字母表示,初步感知乘法运算律的价值。2、在探索运算律的过程中,发展学生的分析、比较、概括能力,培养学生的符号感。3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心。本节课的教学重点为:经历探索乘法交换律、乘法结合律的过程。本节课的教学难点为:能运用乘法交换律、结合律进行简便运算。1 【测评练习测评练习】青岛版小学数学四年级上册乘法结合律和交换律乘法结合律和交换律提出数学问题,分工解决。提出数学问题,分工解决。1、一共购进了多少千克花土?(225)20 2(2520 )2、一共购进了多少千克花肥?(58)10 5(810 )观察仿写:观察仿写:(225)20 = 2(2520 )(58)10 = 5(810 )2观察这两组等式,你能发现什么?请试着写出这样的算式,并验证。大胆尝试:大胆尝试:观察等式,说一下你的发现,用自己喜欢的方式把规律表示出来。猜测验证:猜测验证:乘法会不会也有交换律呢?请自己举例验证,同位交流,并想办法用简洁的方法表示出来。拓展应用:拓展应用:(一)怎样简便就怎样计算1、 2352 92582、 45125 ( 1257)83、 12524 1225(二)火眼金睛辨对错。1、xy=yx, 应用的是乘法结合律。 ( )2、77(88a)=(7788) a ( )3、21353=(25)313 ( )4、800425=800(425) ( )1【观评记录观评记录】青岛版小学数学四年级上册 评评乘法结合律和交换律乘法结合律和交换律关注点:教学设计总评:教学目标明确,环节设计清晰本节课教师紧紧围绕“探究发现验证归纳运用,乘法交换率和结合律”这一教学目标展开,设计了提出数学问题分工解决、自我探究验证、小组合作归纳、猜测推理总结、拓展应用提升等环节,教学思路清晰,活动设计合理,有效完成了教学目标。做到了重组教材,力求让学生经历探究学习的全过程。课的开始,孙老师选用学生熟悉的情境,让学生根据数学信息提出数学问题分工解决,有效唤醒学生头脑中的旧知识,通过让学生观察两种不同的算法其相同点和不同点,水到渠成用等号把两个算式连起来。(225)20 = 2(2520 ) (58)10 = 5(810 )在此基础上,让学生观察这两组等式,你能发现什么?请试着写出这样的算式,并验证。在学生亲自验证等式成立后,展开小组合作,观察等式,说一下你的发现,用自己喜欢的方式把规律表示出来。学生归纳出乘法结合律之后,通过老师说出的一个疑问:乘法会不会也有交换律呢?一石激起千层浪,引发了学生对乘法交换率的猜测验证总结。纵观本节课,乘法结合律、交换律,都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较、和分析,找到解决实际问题不同方法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初2步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。最后,通过拓展应用环节,使本节课的知识进一步得以理解,在解决问题的过程中,使知识进一步内化和提升。关注点:学生的能力培养总评:面向全体学生,注重多方面能力培养教师能面向全体学生,激发学生的深层思考和情感投入,鼓励学生大胆质疑、独立思考,引导学生用自己的语言表达自己的所思所想。教学过程中发展学生从情境中获取数学信息,提出问题、分析问题、解决问题的能力;让学生在对比两种不同解决方法的相同点和不同点上过渡到用等号连接两个算式,在这个基础上,孙老师又引导学生模仿写出等式,验证等式成立之后,让学生观察等式,在唤起学生对已经学过的加法结合律的回忆基础上,总结出乘法结合律。尤其是学生在归纳出乘法结合律之后,通过孙老师有意说出的一个疑问:乘法会不会也有交换律呢?一石激起千层浪,引发了学生对乘法交换率的猜测验证总结。孙老师对学生的引导,进退有度,提供平台和机会,很好地锻炼了学生的知识迁移能力、语言表达能力和抽象概括能力。关注点:学生探究学习总评:设计的活动能够有效引导学生主动探究新知3本节课在学习新知环节中,教师设计了三个活动,引导学生主动对新知进行扎实有效地探究。活动一:观察仿写。在引导出两个等式: (225)20 = 2(2520 )(58)10 = 5(810 )观察这两组等式,你能发现什么?并试着写出这样的算式。学生在自己思考的基础上纷纷交流,相互补充完善着自己的发现,并模仿着共同写出新的等式。活动二:大胆尝试。在学生们亲自验证写出的等式确实成立以后,孙老师又引导:观察上面几组等式,你能根据加法结合律在小组内试着说一下你们的新发现?并试着用你们喜欢的方式把这个规律表示出来。学生在交流时相互启发和完善,很出色地完成学习任务。活动三验证交流。在学生根据前面学习的知识大胆猜测乘法是否也有交换律?会是什么样子?在此基础上请学生自己举例验证,交流发现的规律,并想办法用简洁的方法表示出来。从扶到半扶到完全放手,很好地把学习的舞台让给了学生,使学生在学习过程中能充分调动对以往知识的整合,主动思考探究新知,同时注意倾听别人的意见,修正完善并表达自己的观点,从而实现学生的相互完善、相互提高,共同解决问题掌握新知。 一共购进了多少千克花土?一共购进了多少千克花肥?观察仿写: (225)20 = 2(2520 ) (58)10 = 5(810 ) 观察这两组等式,你能发现什么?并试着写出这样的算式。大胆尝试: 根据加法结合律在小组内试着说一下你们的新发现?并试着用你们喜欢的方式把这个规律表示出来。 三个数相加,先把前两个数相加或者先把后两个数相加,和不变。这就是加法结合律。 三个数相乘,先把前两个数相乘或者先把后两个数相乘,积不变。这就是乘法结合律。用字母表示为:(a b) c=a (b c)验证交流: 请自己举例验证,小组内交流你发现的规律,并想办法用简洁的方法表示出来。 交换两个因数的位置,积不变。这叫做乘法交换律。 用字母表示为:a b=b a我知道:25=1045=2065=3085=40 254=100258=200 1258=1000 拓展应用怎样简便就怎样计算怎样简便就怎样计算: 1、 2352 92582、 45125 ( 1257)83、 12524 1225 =23(52) =2310 =230 =9(258)=9200=1800=51 (254)=51100 =5100 =(1258)7=10007=7000 =125(83) =(1258)3 =10003 =3000 =(34)25 =3(425)=3100=300拓展应用火火火眼金睛判对错:眼金睛判对错:眼金睛判对错:;火眼金睛判对错:1、xy=yx, 应用的是乘法结合律。( )2、77(88a)=(7788) a ( )3、21353=(25)313 ( )4、800425=800(425) ( )火眼金睛判对错: 通过这节课的学习,你有什么收获? 1【课后反思课后反思】青岛版小学数学四年级上册乘法结合律和交换律乘法结合律和交换律通过本节课的教学,我深深体会到:要使得备课与上课达到完美一致,我认为先要做到以下几点:一、教师对知识的理解要到位。对所授知识的解读我们习惯上只是翻看一下课本或者浏览一下教参,除此之外就是借鉴这一系列知识存留在大脑或清晰或模糊的记忆。如此这样,很难对所讲的知识结构有清晰、系统的认识。在备乘法交换律和结合律之前,骆老师在百忙之中抽出时间给我进行了指导。从“运算律”的“律”解读, “规律”规律是隐含不变。 “运算律”是指计算规律是追求结果不变而有不同的计算方法,而这些计算方法是有规律的,叫运算律。 “乘法交换律”“运算”是乘法, “交换”是指因数位置前后对换而结果不变。 “乘法结合律” , “结合”是指有选择的结合起来运算,保持结果不变。因为是 3 个或 3 个以上的因数,说起来就有了先算和后算。作用,交换律可验算乘法,二则与结合律一起运用使乘法计算更简便等等。对知识细致的解读,对我们授课的作用,让我感觉像是船行大海的指南针,教师对知识解读到位,才能明确让学生掌握的知识是什么,知识以怎样的形式呈现,以及所学知识的价值如何体现。如本节课让学生观察两组等式,说出其共同的特点之后也仿照写出这样的算式。就是鉴于对“运算律”它是追求结果不变而有不同的计算方法,而这些计算方法是有规律的的认识,所以让学生围绕着算式,通过观察算式的异同、2举例、计算验证,然后根据加法结合律来概括,逐步使学生对乘法结合律从感性认识逐步上升为理性认识。二、教师对学情了解要到位。学习本节课之前,学生已经掌握了四则混合运算顺序,学习了加法交换律和结合律。从一年级开始,学生就在加法的计算和验算中接触过这方面的知识,有较多的感性认识,这是学生学习加法交换律和结合律的基础。从二年级学生在乘法的计算和验算中接触过乘法交换律,积累了很多的感性认识,而加法交换律和结合律的学习方法和学习活动也为学生学习乘法交换律和结合律的学习奠定了很好的基础。考虑学生有前面加法运算律的基础,我原始的备课是让学生举例验证后自己直接概括出乘法结合律。但后来我深入学生了解,发现很多学生不能完整地说出加法结合律,虽然他们心里很明白。 鉴于此,我略为改动,把加法结合律通过课件呈现在学生面前,当无形变为有形之后,学生才能比较轻松的把在举例、验证充分获得的感性认识通过迁移把乘法结合律完美的抽象概括出来。学情不仅包括知识层面的情况,还要考虑学生的心里特点,注意激发学生的学习热情。这节课是一节计算课,考虑到一上课就干巴巴的呈现情境图提问题,很难激发学生的兴奋点。所以在呈现情境图提问题之前,我展示了校园春天的花草树木的图片。学生在欣赏美图时,眼睛很明亮,心情比较愉悦。这样设计也为后面购买花土花肥做好了伏笔。三、教师对学生的预设要到位。由于不同的学生会有不同的理解能力,不同的语言表达能力。即使3我们对学生情况了解地再到位,依然无法确定学生当场的表现。只有充分做好预设,才能比较从容的掌控课堂,才有可能捕捉和利用教学资源。比如学生在观察两组等式进行仿写,一是学生顺利地进行老师板书,若不能,老师示范仿写,并进一步说明左右算式的区别与联系,引导学生进行仿写。让学生用自己喜欢的方式表示出乘法结合律,一是选择展示学生有代表性的表现方式,如果形式单一,我准备说, “老师想到的这几种表现方式,你喜欢哪一种?”借此完善“举例-验证-概括-符号表示”的认知过程。让学生根据加法有结合律和交换律,猜测乘法会不会也有乘法交换律?根据自己的经验与理解,它会是什么样子?学生可能说, “交换加数的位置和不变,是加法交换律。那么交换因数的位置积不变,是乘法交换律。 ”如此我会说,是这样吗?请你举例验证。也可能学生会举例子说明,说加法交换律比如 1+2=2+1,乘法交换律就是12=21。我会继续追问,一个例子说明不了问题,请继续这样举例验证。这几种情况都是我乐见的,之后展示交流。如果学生上来就说,加法交换律是 a+b=b+a,乘法交换律是 ab=ba 我如何接手?我会对学生说,我们学过加法交换律,a+b=b+a,这里的 a 和 b 代表任何一个数。您刚才所说的乘法交换律是 ab=ba,a 和 b 也能代表任何数吗?事实胜于雄辩,请大家举例验证。假如学生此时无动于衷,脑洞不开又怎么办?我会自圆其说, “都说温故而知新” ,我们一起回顾一下:加法交换律是交换加数的位置和不变,我们通过迁移的方法,根据加法结合律概括出乘法结合律,现在根据加法交换律来猜测乘法交换律就是?交换因数的位置积不变。事实是这样吗?请大家举例验证。也就是说,课前,4尽可能多的考虑到学生在课堂中可能出现的各种情况,力争课上,关注学生的学习状态思维方向,即时调整教学方案和教学行为,促进课堂教学过程不断动态生成。后者更重要,但确实需要真功夫。就本节课,学生根据自己对知识的掌握及理解对判断题进行辨析,提出自己的见解和疑问。体现了学生在主动参与中思维的灵活性和开拓性,也出现了令我意外而惊喜的资源。但学生在举例、验证、或是其他发言,每每不在我预设范围之内时,我应付的还是拘谨、仓促和不安。一是说明备课的时候没有准备充分,二是这方面的能力就是缺乏。都说智者千虑也难免一失,对于自己这样一个普通的数学老师来说,即使万虑也难免漏洞百出。总体来看,今天这节课的学习,我力求突出知识的系统性,有意识地引导学生亲历“做数学”的过程,问题让学生自己去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得基本达到教学目标。但本节课的教学还有很多很多不足的地方:在教学中,有点偏于关注部分学生,要注意与全体学生的交流,让所有人都能积极参与到学习中来,多注意学生的养成教育,教会学生“倾听” 。在放手让学生通过对比、举例、验证以及总结概括运算规律的时候,仍然显得急躁,急于快速出现自己想要的结果,对学生放手及引导还是不到位。3、教师课堂上恰当的评价会激发学生内在的学习欲望。本节课我对于学生的评价比较简单,在今后的教学中对学生评价的针对性、指导5性及激励性方面还要做进一步的努力。 1【课标分析课标分析】青岛版小学数学四年级上册乘法结合律和交换律乘法结合律和交换律本课知识是青岛版小学数学四年级上册的内容,属于“数与代数”领域中的数的运算部分。本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。本节课是学生掌握了四则混合运算顺序的基础上,在学习了加法交换律和结合律之后进一步学习的运算律。它与加法交换律、结合律无论在形式上还是方法上都存在相通、相似的地方。其运算律内容的编排结构基本一致,即观察算式-仿写算式-解释规律-应用规律,经历乘法运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,使学生在理解运算律含义的基础上应用运算律,使一些计算更加简便。在本学段,课程标准在“数的运算”中对“运算律”是这样要求的:探索并了解运算律,会应用运算律进行一些简便运算。对“数与代数”学习的评价,应主要考察学生对数与运算意义的理解和应用。包括以下几个方面 :能否运用数与计算的知识描述并解决实际问题;是否能够运用合理的计算策略正确地进行运算;是否有对计算结果进行估算和验算的习惯;能否有效地利用计算器探求规律。本节课对学生的评价,重点看学生是否能通过观察、仿写、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的2确定性。为达成这一目标,对乘法结合律和交换律的学习,都是从学生提出的实际问题的解答引入,让学生通过观察、比较、和分析,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。通过让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,在理解运算律含义的基础上应用运算律,使一些计算简便。体现发现规律是为了掌握规律,进而在解决问题中应用规律,提高学习效率。教学重点是对“计算技巧”进行训练,关注“选择策略能力”的培养。1【教学设计教学设计】青岛版小学数学四年级上册 乘法结合律和交换律乘法结合律和交换律教学目标:1、使学生经历乘法结合律和交换律的过程,发现结合律和交换律,并能用字母表示,初步感知乘法运算律的价值。2、在探索运算律的过程中,发展学生的分析、比较、概括能力,培养学生的符号感。3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心。课型:新授课教学重点:经历探索乘法交换律、乘法结合律的过程。教学难点:能运用乘法交换律、结合律进行简便运算。教学准备:多媒体课件教学流程:一、情境导入:我们一起欣赏校园美景。(课件显示)花开了,树也绿了。为了让花儿更红,校园更美,老师购进了一些花土和花肥。(课件显示:情境图)仔细观察,根据已经告诉我们的数学信息,你能提出哪些数学问题?2(一)提出数学问题,分工解决。(二)找出不同的列式展示交流。1、一共购进了多少千克花土?我发现为解决同一个问题,同学们出现了两种算法,他们都对吗?展示:(225)20 2(2520 )2、观察这两种算法,谁能试着说一下他们的相同与不同的地方?既然这两个算式的结果相等,我们可以用等号把这两个算式连起来。(225)20 = 2(2520 )接下来看第二个问题:一共购进了多少千克花肥?也出现了两种算法,谁能说一下他们相同与不同的地方?既然这两个算式的结果也相等,我们也可以用等号把这两个算式连起来。(58)10 = 5(810 )二、新课3(一)观察仿写:观察这两组等式,你能发现什么?并试着写出这样的算式。学生交流,师板书等式大家说的这些算式左右都相等吗?赶快验证一下吧。(二)大胆尝试:观察上面几组等式,你能根据加法结合律在小组内试着说一下你们的新发现?并试着用你们喜欢的方式把这个规律表示出来。小组代表交流、投影显示学生不同的表示方法。课件显示:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。这是我们今天学习的第一个内容。板书:乘法结合律用字母表示,这也是习惯上常用的方法 :(ab)c=a(bc)我们知道加法有结合律还有交换律,大家大胆猜测一下,乘法会不会也有交换律呢?根据你的经验与理解,它会是什么样子?(三)验证交流:真的是这样吗?请自己举例验证,同桌交流你发现的规律,并想办法用简洁的方法表示出来。找生展示交流。师总结,我们一起读一下:(课件显示):交换两个因数的位置,积不变。这叫做乘法交换律。习惯上,用小写字母表示乘法交换律:ab=ba4这是今天学习的第二个内容,板书:交换律知道它在数学学习中有什么应用吗?乘法交换律不仅可以用在验算中,它还常常与结合律一起运用,使乘法计算简便。通常当算式中出现因数 5 时,我们会让 2、4、6、8 与5 结合先算,得出整十数再与第三个数相乘;当算式中出现因数 25 时,我们会让 4、8 与 25 结合先算,得出整百数再与第三个数相乘;当算式中出现因数 125 时,我们马上想到与 8 结合先算,得出整千数再与第三个数相乘。说了这么多,有信心小试一下?3、拓展应用:(一)怎样简便就怎样计算1、 2352 92582、 45125 ( 1257)83、 12524 1225(二)火眼金睛辨对错。1、xy=yx, 应用的是乘法结合律。( )2、77(88a)=(7788) a ( )3、21353=(25)313 ( )4、800425=800(425) ( )为什么错了?要注意什么?四、课堂小结: 一节课的时间马上就要结束了,说一下你有什么收获?5祝贺大家在短短一节课的时间里,有了这么多的收获。相信大家一定能利用本节课学习的知识更灵活的解决生活中的数学问题。
展开阅读全文
相关搜索