初中数学-八年级数学教案第三册三角形的中位线.docx

上传人(卖家):风予禄 文档编号:1982763 上传时间:2021-12-23 格式:DOCX 页数:12 大小:10.04KB
下载 相关 举报
初中数学-八年级数学教案第三册三角形的中位线.docx_第1页
第1页 / 共12页
初中数学-八年级数学教案第三册三角形的中位线.docx_第2页
第2页 / 共12页
初中数学-八年级数学教案第三册三角形的中位线.docx_第3页
第3页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、教学目标1理解三角形中位线的概念,掌握它的性质及初步应用2通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力教学重点与难点重点是三角形中位线的性质定理难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用教学过程设计一、联想,提出问题(投影)复习平行线等分线段定理及两个推论(图)(1)请同学叙述定理及推论的内容(2)用数学表态式叙述图(c)中的结论已知在中,为中点,则逆向思维,探索新结论引导学生思考:在图中,反过来,若,分别为,中点,与有什么位置和数量关系呢?启发学生逆向类比猜想:(逆向联想),(因为,类比联想的第三边与的第三边也存在相同的倍数关系)由此

2、引出课题二、证明猜想,形成定理1定义三角形的中位线,强调它与三角形的中线的区别2证明上述猜想成立,教师重点分析辅助线的作法的思考过程教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法3板书一种证明过程4将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半5分析定理成立的条件、结论及作用条件:连结两边中点得到中位线结论有两个,即位置关系和数量关系,根据题目需要选用作用:在已知两边中点

3、的条件下,证明线段的平行关系及线段的倍分关系三、应用举例、变式练习(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题(1)已知:如图4-91(a),D,E分别为AB和AC的中点DE=5BC;(2)如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,C70,求DF和EDF;(3)如图4-91(c),它包含几个图4-90这样的基本图形?哪些三角形全等?有几个平行四边形?若DEF周长为10 cm,求ABC的周长若ABC的面积等于20cm2,求DEF的面积AF与DE有何关系?怎样用语言叙述这结论?分析:(1)可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮

4、助学生建立分解基本图形的思想(2)通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14这个过程可以无限进行下去,如图4-92(3)从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分(板书)例2(包含图4-90的问题)如图4-93,AD是ABC的高,M,N和E分别为AB,AC,BC的中点求证:(1)四边形MNDE为等腰梯形;(2)MENMDN分析:(1)由条件分析,图中可分解出“AD是ABC的高”,“三角形的中位线是MN,ME,NE”,“直角三角形斜边上中线MD,ND”想一想,这些基本图形都有什么性质?(2)从结论出发,要

5、证四边形MEDN是等腰梯形,只需证MNDE,且MNDE及以下三种情况之一成立:ME=ND;MD=EN;EMNDNM从而证得结论成立让学生口述,教师板书证明过程例 3构造图4-90问题(1)求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;(2)若已知四边形为特殊四边形呢?已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94求证:四边形EFGH是平行四边形分析:(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”

6、的基本图形(2)让学生画图观察并思考此题的特殊情况,如图495,顺次连结各种特殊四边形中点得到什么图形?投影显示:四、师生共同小结1教师提问引起学生思考:(1)这节课学习了哪些具体内容:(2)用什么思维方法提出猜想的?(3)应注意哪些概念之间的区别?2在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基本图形(如图496)(1)注意三角形中线与中位线的区别,图496(a),(b)(2)三角线的中位线的判定方法有两种:定义及判定定理,图496(b),(。)(3)证明线段倍分关系的方法常有三种,图496(b),(d),()3先猜想后证明的研究问题方法;逆向思维,探究逆命题是否

7、成立,由此经常得到一些好的结论;添辅助线构造基本图形来使用性质的解题方法4三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节课作思维上的准备)五、作业课本第180页第4题,第184页第5,7,8题,第185页B组第1题补充题:(构造三角形的中位线)1如图497,AD是上ABC的外角平分线,CD上AD于DE是BC的中点求证:(1)DEAB:(2)DE(ABAC)(提示:延长CD交BA延长线于F)2如图498,正方形ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F求证:BF=CF(提示:作OGEF交于BC于G)3如图499,在四边形ABCD中,ABCD,E,F分别是AD,BC的中点,延长BA和CD分别交FE的延长线于G,H点求证:BGFCHF(提示:连结AC,取AC中声、M,连结EM,FM)课堂教学设计说明本教学过程设计需1课时完成1本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析?猜想?证明”的过程变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦2在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 八年级上册
版权提示 | 免责声明

1,本文(初中数学-八年级数学教案第三册三角形的中位线.docx)为本站会员(风予禄)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|