-
全部
- 二次函数的图像与性质.docx--点击预览
- 二次函数的图像与性质.ppt--点击预览
文件预览区
|
|
资源描述
初三数学有效复习的几点思考-二次函数图象与性质复习课的教后反思一、备课反思-教学目标定位 本课例的初稿,我设置了两个核心板块,一个是“开放性问题开放性问题” ,另一个是“问题串问题串” ,是由本节图形不断增加元素,变成一个问题串,很自然的使一个函数问题逐渐跟简单的几何问题联系起来,问题围绕同一个图形展开,课上起来也很流畅。上周四中心组的老师来听试讲课,大家很推崇这个开放性问题,认为一节课能够把这个问题讲通透就很好了,我立刻采纳这个建议,把这个问题真的做下来,感受非常的深刻。首先,复习的目的是什么?其次,一节课时间就 40 分钟,能突破什么?这是我们老师同样要思考的.经过中心组老师的集体智慧,定出了本节课的教学目标:1. 复习二次函数图象与性质的基础知识(解析式、顶点坐标、对称轴、增减性).2. 让学生经历读图过程,学会多维度的识图读图,学习一般的提取图象信息的方法. 学会对获得的信息进行归类,并纳入知识体系.3. 感受数形结合、转化思想在问题中的运用.二、学情分析-大数据的科学定位本班为我带的班级,学生和老师高度默契,学生数学基础较好,课堂活跃.已基本掌握二次函数图象与性质的基础知识(解析式、顶点坐标、对称轴、增减性) ,但具体到哪些知识已过关,哪些还要加强,哪个同学在哪个环节有问题,其实老师是没有底的,这次多亏了有数据支撑.本节课从前测数据分析,学生对于二次函数的图象表面信息的获取,以及单一图象的读图和解析式的求法,问题都不大;说明零散的知识学生是有的,至于知识的来龙去脉,估计也不会去深究.我想,既然是函数课,那函数的研究方法离不开数形结合。本节课试图引导学生通过“形(图象特征)-数(数式表达 ) ”的转换过程,充分理解具体问题中数形结合的“结合点” (解析式、顶点坐标、对称轴、增减性).三、目标达成的方法1.找好问题“自学、议论、引导”教学法告诉我们,好的“问题”要具有“数学味”;好的“问题”应尽量串联整节课.也许,我今天真的找到了一个好问题,能够保持课堂的自然生成。但实际上,这样的课是我的教学常态,这是我极力推崇的事,我认为,只要老师有找好问题的意识,何愁找不到好问题;只要老师愿意带领学生去探索好问题,课堂肯定是快乐,学生的身心是愉悦的,是高效的.实践证明,它可以给学生节省很多宝贵的时间,能避免学生掉进“题海”.2.深入研究好问题对于二次函数,首先,它是个函数,是变量之间的关系,而这种关系体现出来是“二次”的,初中生对于二次的理解,很容易联想到一元二次方程,而两者之间本来就是统一的,y 值取不取定的问题,这里学生除了要读懂函数层面上的东西之外,与方程的关系实际上更加的重要,切入这个点,更能培养学生的理性思维,逻辑推理,辩证观点,所以,函数的难题往往就出在这个结合点上,如何让学生理解这些知识,在第一轮复习的时候,就要教会方法,本节课有机会在课堂上生成下面这样的表格,老师一定要用好这样的资源.形数结合点图象与 x 轴有两个交点2 4 0方程a有两个不2+ + = 0相等的实数根两个交点是(-1,0) ,(0,3)方程有两 2+ 2 + 3 = 0个不相等的实数根,它们是1= 1,2= 31+ 2= 2,12= 3y = 0时, = 2+ + 变成方程2+ + = 0 x1+ 2=而对称轴 x=-2顶点纵坐标 = 4方程有唯2+ + = 4一解 x=1方程无解2+ + = 5当 m 取何值,方程有解.2+ + = 仔细体会一下,这里y = 0时, = 2+ + 变成,它的两根方程2+ + = 0 x1+ 2=而函数的对称轴 x=-2内在的联系在于:因为)关于对称轴对称,(1,0),(2,0 x1+ 22=2=-2所以对称轴 x=-2上述的过程打通了 与对称轴 x=的联系,解决了长期在学生心中这两个公x1+ 2=-2式互相干扰的困惑.更进一步的让学生体会两个知识点之间的联系.另一个过程:顶点坐标(1,4),.2 + = 0 = 1时, + + = 4x=1 时,图象对应点最高若x = 1,则 + + 2+ + 这里是对函数最高点的三个层次的理解,特别第三个,平时在题目中出现,学生都会认为很难的,但在这里不留痕迹的渗透,根本就没有难度.3.课堂的主体是学生学生弄懂问题,他可以有各种方法,包括自主发现、同伴交流、老师引导,最终都要落实到他自己弄清楚,最好是能讲出来。这个班我一直带着他们在使用李庾南老师的“自学、议论、引导”教学法,学生很享受这种“有规则的自由”课堂,我的课堂问题也都是因他们而产生的,“一个问题,一串知识”,“一串问题,一个知识”的问题模式,是我教学的常态,学生常常陶醉其中。除了课堂上的学习,学生也有做数学笔记的习惯,每天会整理学习的点点滴滴,做错题分析和知识归纳.4.课堂的引领者是老师复习课最终是要教会学生思考:如何从表面的看到深层的?(整体把握-局部突破-寻找联系).如何把杂乱变成有序?(形-数-数形结合的结合点) ,这里,形(一个小小的图象)-数(一串长长的结论)-一个函数.(少-多-少).也就是我们平常说的书的厚薄问题.要从”薄-厚-薄”这样的过程.而这样的过程,是课堂自动生成的. 学生从零散的知道有这些东西,到有序的把它纳入知识体系,建构自己的数学王国,需要方法的引领,二次函数的知识可以这样来建构,别的内容,同样可以这样来做,学生养成了习惯,他的数学思维是自然形成的。我认为,培养学生的核心素养需要在每一堂课,每一次的思维碰撞中一点点去做的。5.适时生成探索性问题本节课的图象探索过了,有没有继续思考的空间,答案是肯定的,题目3个关键条件只要有一个变动,问题就动起来了,这种充满研究魅力的问题,当然不要错过.这是我们的探索性训练的主要来源.注:探索性训练的模式,是我们学校从2005年开始就做的一个研究。我们备组三年来一直坚持在做,具体是,每周根据所学知识,都有2-4道的探索性问题,学生通过自己学习,同伴交流,课堂分析,到课后做到数学笔记一系列的过程,体会数学思考、同伴交流的乐趣,并真正为解决问题打下良好的基础.二次函数的图二次函数的图象象与性质与性质 复习课复习课二次函数基本知识回顾1.解析式(一般式、顶点式、交点式)2.抛物线位置由a、b、c决定开放性问题-基本图形我来读图1 (1)看整体 图象特征(形) 函数图象是抛物线,且开口向下 图象过点(-1,0),(0,3),图象对称轴x=1 (题目的三个关键条件) 数式表达(数) 数形结合的结合点 二次函数的图象是一条抛物线. (2)读细节 抛物线与y轴的交点C在x轴上方 当x=0时,y=c. C决定图象与y轴交点的位置 图象过点(-1,0) 图象必过点(3,0) x=1时,图象对应点最高 顶点坐标(1,4),2a+b=0 图象有在x轴上方的 图象有在x轴下方的 图象有对称性 (0,3)关于x=1的对称点(2,3) 图象有增减性 图象的增减性由开口方向和对称轴共同决定. (2)读细节 (3)找联系 图象与x轴有两个交点 两个交点是 (-1,0),(0,3)问题回想数学味道我来品 1、方法解读-如何识图(脚手架) 如何识图 1.这是一个什么函数的图象 二次函数(自变量的取值范围,函数值的范围,对应关系) 心中有个脚手架 2.二次函数解析式 三种解析式表达方法,选哪一种? 3.图象特征 4.关键点 开口(方向,大小)?对称轴? 顶点坐标?-该记的要记清楚. 5.增减性 与坐标轴的交点.图象中出现的所有点 图象的变化趋势-对称轴起着关键作用 2、欣赏你的结论-由小见大,建构我的数学王国 形 (一个小小的图象) 数 (一串长长的结论) 表面的 深层的 (多看多想) 问题延伸-题目我来编 1.对称轴变为x=n,其他条件不变,我们来研究研究. 从数上解释-用数式的方式,你怎么做? 从a的表达式,你得到什么?何时开口向上?向下?谢谢!
展开阅读全文
相关搜索
资源标签