1、试卷主标题试卷主标题姓名:_ 班级:_考号:_一、选择题(共一、选择题(共 1212 题)题)1、 在数轴上,点A表示 -2 若从点A出发,沿数轴的正方向移动 4 个单位长度到达点B,则点B表示的数是( )A -6 B -4 C 2 D 42、 在中,若,则点C到直线AB的距离为( )A 3 B 4 C 5 D 2.43、 下列计算中,正确的是( )A B C D 4、 如图,在中,BE平分 ABC交DC于点E若,则 DEB的大小为( )A 130 B 125 C 120 D 1155、 如图所示的几何体,是由几个相同的小正方体组合而成的,其俯视图为( )A B C D 6、 把不等式组中每个
2、不等式的解集在同一条数轴上表示出来,正确的为( )A B C D 7、 下列一元二次方程中,无实数根的是( )A B C D 8、 在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A B C D 9、 如图,是的外接圆,CD是的直径 若, 弦, 则的值为( )A B C D 10、 对于二次函数,有以下结论: 当时,y随x的增大而增大; 当时,y有最小值 3 ; 图象与x轴有两个交点; 图象是由抛物线向左平移 6 个单位长度,再向上平移 3 个单位长度得到的其中
3、结论正确的个数为()A 1 B 2 C 3 D 411、 如图,在中,点C为边AB上一点,且如果函数的图象经过点B和点C,那么用下列坐标表示的点,在直线BC上的是( )A ( -2019 , 674 ) B ( -2020 , 675 )C ( 2021 , -669 ) D ( 2022 , -670 )12、 在锐角中,分别以AB和AC为斜边向的外侧作等腰和等腰, 点D、E、F分别为边AB、AC、BC的中点, 连接MD、MF、FE、FN 根据题意小明同学画出草图 (如图所示) , 并得出下列结论: , , ,其中结论正确的个数为( )A 4 B 3 C 2 D 1二、解答题(共二、解答题(
4、共 6 6 题)题)1、 计算:2、 某商品原来每件的售价为 60 元,经过两次降价后每件的售价为 48.6 元,并且每次降价的百分率相同( 1 )求该商品每次降价的百分率;( 2 ) 若该商品每件的进价为 40 元, 计划通过以上两次降价的方式, 将库存的该商品 20 件全部售出,并且确保两次降价销售的总利润不少于 200 元,那么第一次降价至少售出多少件后,方可进行第二次降价?3、 如图,矩形ABCD的对角线AC、BD相交于点O,( 1 )求证:四边形AOBE是菱形;( 2 )若,求菱形AOBE的面积4、 甲、 乙两车沿同一条笔直的道路匀速同向行驶, 车速分别为 20 米 / 秒和 25
5、米 / 秒 现甲车在乙车前 500 米处,设x秒后两车相距y米,根据要求解答以下问题:( 1 )当(秒)时,两车相距多少米?当(秒)时呢?( 2 )求y关于x的函数解析式,并写出自变量x的取值范围;( 3 )在给出的平面直角坐标系中,请直接画出( 2 )中所求函数的图象5、 如图,在中,AB为的直径,直线DE与相切于点D,割线于点E且交于点F,连接DF( 1 )求证:AD平分 BAC;( 2 )求证:6、 如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线相交于点A、B(点A在点B的左侧)( 1 )如图 1 ,若点A、B
6、的横坐标分别为 -3 、,求线段AB中点P的坐标;( 2 )如图 2 ,若点B的横坐标为 4 ,求线段AB中点P的坐标;( 3 )如图 3 ,若线段AB中点P的坐标为,求y关于x的函数解析式;( 4 )若线段AB中点P的纵坐标为 6 ,求线段AB的长三、填空题(共三、填空题(共 6 6 题)题)1、 使得代数式有意义的 x 的取值范围是 _ 2、 如图,在中,点D是边BC上的一点若,则 C的大小为 _ 3、 计算:_ 4、 某芭蕾舞团新进一批女演员,她们的身高及其对应人数情况如表所示:身高( cm ) 163164165166168人数12311那么,这批女演员身高的方差为 _ 5、 若点、都
7、在反比例函数(k为常数)的图象上,则、的大小关系为 _ 6、 如图,在中,若点P是内一点,则的最小值为 _ =参考答案参考答案=一、选择题一、选择题1、 C【分析】根据数轴的特点,可知从点A出发,沿数轴的正方向移动 4 个单位长度到达点B,则点B表示的数为 -2+4 ,然后计算即可【详解】解:由题意可得,点B表示的数为 -2+4=2 ,故选: C 【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,点向左平移表示的数值变小,向右平移表示的数值变大2、 D【分析】根据题意画出图形,然后作CDAB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长【详解】解:作CDAB于点D,
8、如右图所示,ACB=90 ,AC=3 ,BC=4 ,AB=5 ,解得CD=2.4 ,故选: D 【点睛】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答3、 C【分析】根据单项式加单项式和合并同类项的方法可以判断 A ,根据同底数幂的乘法可以判断 B ,根据单项式乘单项式可以判断 C ,根据幂的乘方可以判断 D 【详解】解: 2a+3a=5a,故选项 A 不符合题意;a2a3=a5,故选项 B 不符合题意;2a3a=6a2,故选项 C 符合题意;(a2)3=a6,故选项 D 不符合题意;故选: C 【点睛】本题考查合并同类项、同底数幂的乘法、单
9、项式乘单项式、积的乘方,解答本题的关键是明确它们各自的计算方法,计算出正确的结果4、 C【分析】根据平行四边形的性质,可以得到ADBC,DCAB,然后即可得到 A+ABC=180 , ABE+DEB=180 ,再根据 A=60 ,BE平分 ABC,即可得到 DEB的度数【详解】解: 四边形ABCD是平行四边形,ADBC,DCAB,A+ABC=180 , ABE+DEB=180 ,A=60 ,ABC=120 ,BE平分 ABC,ABE=60 ,DEB=120 ,故选: C 【点睛】本题考查平行四边形的性质、平行线的性质、角平分线的定义,利用数形结合的思想解答是解答本题的关键5、 B【分析】根据题
10、目中的立体图形,可以直接作出它的俯视图,从而可以解答本题【详解】解:由图可得,俯视图为:故选: B 【点睛】本题考查简单组合体的三视图,解答本题的关键是画出它的俯视图6、 B【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可【详解】解:,解不等式 ,得:x -6 ,解不等式 ,得:x13 ,故原不等式组的解集是 -6 x13 ,其解集在数轴上表示如下:故选: B 【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集7、 D【分析】计算出各个选项中的
11、 的值,然后根据 0 有两个不等式的实数根, =0 有两个相等实数根, 0 无实数根判断即可【详解】解:在x2-2x-3=0 中, =b2-4ac= ( -2 )2-41 ( -3 ) =16 0 ,即该方程有两个不等实数根,故选项 A 不符合题意;在x2+3x+2=0 中, =b2-4ac=32-412=1 0 ,即该方程有两个不等实数根,故选项 B 不符合题意;在x2-2x+1=0 中, =b2-4ac= ( -2 )2-411=0 ,即该方程有两个相等实数根,故选项 C 不符合题意;在x2+2x+3=0 中, =b2-4ac=22-413=-8 0 ,即该方程无实数根,故选项 D符合题意
12、;故选: D 【点睛】本题考查根的判别式,解答本题的关键是明确 0 有两个不等式的实数根, =0 有两个相等实数根, 0 无实数根8、 A【分析】首先判断各图形是否是轴对称图形,再根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况, 再利用概率公式求解即可求得答案【详解】解: 线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,分别用A、B、C、D表示线段、等边三角形、平行四边形和正六边形, 随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为=,故选: A 【点睛】本题考查概率公式、轴对称图形,解答本题的关
13、键是写出题目中的图形是否为轴对称图形,明确两张都是轴对称图形是同时发生的9、 A【分析】连接AD,根据直径所对的圆周角等于 90 和勾股定理,可以求得AD的长,然后即可求得 ADC的余弦值,再根据同弧所对的圆周角相等,可以得到 ABC=ADC,从而可以得到cosABC的值【详解】解:连接AD,如右图所示,CD是 O的直径,CD=10 ,弦AC=6 ,DAC=90 ,AD=8 ,cosADC=,ABC=ADC,cosABC的值为,故选: A 【点睛】本题考查三角形的外接圆与外心、圆周角、锐角三角函数、勾股定理,解答本题的关键是求出cosADC的值,利用数形结合的思想解答10、 A【分析】将题目中
14、的函数解析式化为顶点式,然后根据二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题【详解】解: 二次函数, 该函数的对称轴为直线x=6 ,函数图象开口向上,当 5 x 6 时,y随x的增大而减小, 当x 6 时,y随x的增大而增大, 故 不符合题意;当x=6 时,y有最小值 3 ,故 符合题意;当y=0 时,无实数根,即图象与x轴无交点,故 不符合题意;图象是由抛物线向右平移 6 个单位长度,再向上平移 3 个单位长度得到的,故 不符合题意;故正确的是 ,正确的个数是 1 ,故选: A 【点睛】本题考查二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函
15、数的性质解答11、 D【分析】根据反比例函数图象上点的坐标特征,求出B、C点的坐标,再写出BC解析式,再判断点在BC上【详解】解:作,设,或(舍去),图象经过点,设的解析式为,解得,当时,当时,当时,当时,故选: D 【点睛】本题考查反比例函数图象上的点的性质,能求出的解析式是解题的关键12、 B【分析】根据直角三角形斜边中线等于斜边的一半和三角形中位线定理判断结论 ,连接DF,EN,通过SAS定理证明 MDFFEN判断结论 ,利用全等三角形的性质结合平行四边形的判定和性质判断结论 ,利用相似三角形的判定和性质判定结论 【详解】解: D、E、F分别为边AB、AC、BC的中点,且 ABM是等腰直
16、角三角形,DM=AB,EF=AB,EFAB, MDB=90 ,DM=EF, FEC=BAC,故结论 正确;连接DF,EN,D、E、F分别为边AB、AC、BC的中点,且 ACN是等腰直角三角形,EN=AC,DF=AC,DFAC, NEC=90 ,EN=DF, BDF=BAC, BDF=FEC,BDF+MDB=FEC+NEC,MDF=FEN,在 MDF和 FEN中,MDFFEN(SAS),DMF=EFN,故结论 正确;EFAB,DFAC, 四边形ADFE是平行四边形,DFE=BAC,又 MDFFEN,DFM=ENF,EFN+DFM=EFN+ENF=180-FEN=180- ( FEC+NEC)=1
17、80- ( BAC+90 )=90-BAC,MFN=DFE+EFN+DFM=BAC+90-BAC=90 ,MFFN,故结论 正确;EFAB,CEFCAB,SCEF=S四边形ABFE,故结论 错误, 正确的结论为 ,共 3 个,故选: B 【点睛】本题考查全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,三角形中位线定理,题目难度适中,有一定的综合性,适当添加辅助线构造全等三角形是解题关键二、解答题二、解答题1、【分析】先将括号内的式子通分,然后将括号外的除法转化为乘法,再约分即可【详解】解:【点睛】本题考查分式的混合运算,解答本题的关键是明确异分母分式减法和分式除法的运算
18、法则和运算顺序2、 ( 1 ) 10% ;( 2 ) 6 件【分析】( 1 )根据某商品原来每件的售价为 60 元,经过两次降价后每件的售价为 48.6 元,并且每次降价的百分率相同,可设每次降价的百分率为x,从而可以列出方程 60 ( 1-x)2=48.6 ,然后求解即可;( 2 )根据题意和( 1 )中的结果,可以列出相应的不等式,然后即可求得第一次降价出售的件数的取值范围,再根据件数为整数,即可得到第一次降价至少售出多少件后,方可进行第二次降价【详解】解:( 1 )设该商品每次降价的百分率为x,60 ( 1-x)2=48.6 ,解得x1=0.1 ,x2=1.9 (舍去),答:该商品每次降
19、价的百分率是 10% ;( 2 )设第一次降价售出a件,则第二次降价售出( 20-a)件,由题意可得,解得a,a为整数,a的最小值是 6 ,答:第一次降价至少售出 6 件后,方可进行第二次降价【点睛】本题考查一元二次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出等量关系和不等关系,列出相应的方程和不等式,第一问是典型的的下降率问题,是中考常考题型3、 ( 1 )证明过程见解答;( 2 )【分析】( 1 )根据BEAC,AEBD,可以得到四边形AOBE是平行四边形,然后根据矩形的性质,可以得到OA=OB,由菱形的定义可以得到结论成立;( 2 )根据 AOB=60 ,AC=4 ,
20、可以求得菱形AOBE边OA上的高,然后根据菱形的面积 = 底 高,代入数据计算即可【详解】解:( 1 )证明: BEAC,AEBD, 四边形AOBE是平行四边形, 四边形ABCD是矩形,AC=BD,OA=OC=AC,OB=OD=BD,OA=OB, 四边形AOBE是菱形;( 2 )解:作BFOA于点F, 四边形ABCD是矩形,AC=4 ,AC=BD=4 ,OA=OC=AC,OB=OD=BD,OA=OB=2 ,AOB=60 ,BF=OBsinAOB=, 菱形AOBE的面积是:OABF=【点睛】本题考查菱形的判定、矩形的性质,解答本题的关键是明确菱形的判定方法,知道菱形的面积 = 底 高或者是对角线
21、乘积的一半4、 ( 1 )当x=50 (秒)时,两车相距 250 米,当x=150 (秒)时,两车相距 250 米;( 2 );( 3 )见解析【分析】( 1 )根据题意,可以先计算出两车相遇需要的时间,然后即可计算出当x=50 和x=150时,两车的距离;( 2 )先计算出两车相遇需要的时间,然后根据x的取值范围不同,写出相应的函数解析式即可;( 3 )根据( 2 )中的函数解析式和两点确定一次函数的图象的方法,可以画出相应的函数图象【详解】解:( 1 ) 500 ( 25-20 ) =5005=100 (秒), 当x=50 时,两车相距: 2050+500-2550=1000+500-12
22、50=250 (米),当x=150 时, 两车相距:25150-( 20150+500 )=3750-( 3000+500 )=3750-3500=250(米),答:当x=50 (秒)时,两车相距 250 米,当x=150 (秒)时,两车相距 250 米;( 2 )由题意可得,乙车追上甲车用的时间为: 500 ( 25-20 ) =5005=100 (秒), 当 0 x100 时,y=20 x+500-25x=-5x+500 ,当x 100 时,y=25x- ( 20 x+500 ) =25x-20 x-500=5x-500 ,由上可得,y与x的函数关系式是;( 3 )在函数y=-5x+500
23、 中,当x=0 时,y=-50+500=500 ,当x=100 时,y=-5100+500=0 ,即函数y=-5x+500 的图象过点( 0 , 500 ),( 100 , 0 );在函数y=5x-500 中,当x=150 时,y=250 ,当x=200 时,y=500 ,即函数y=5x-500 的图象过点( 150 , 250 ),( 200 , 500 ),画出( 2 )中所求函数的图象如图所示【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,画出相应的函数图象,利用数形结合的思想解答5、 ( 1 )见解析;( 2 )见解析【分析】( 1 )连接OD,然后根据
24、切线的性质和平行线的性质,可以得到 ODA=DAC,再根据OA=OD,可以得到 OAD=ODA,从而可以得到 DAC=OAD,结论得证;( 2 )根据相似三角形的判定和性质,可以得到DBDF=EFAB,再根据等弧所对的弦相等,即可证明结论成立【详解】解:( 1 )证明:连接OD,如图所示, 直线DE与 O相切于点D,ACDE,ODE=DEA=90 ,ODAC,ODA=DAC,OA=OD,OAD=ODA,DAC=OAD,AD平分 BAC;( 2 )证明:连接OF,BD,如图所示,ACDE,垂足为E,AB是 O的直径,DEF=ADB=90 ,EFD+AFD=180 , AFD+DBA=180 ,E
25、FD=DBA,EFDDBA,DBDF=EFAB,由( 1 )知,AD平分 BAC,FAD=DAB,DF=DB,DF2=EFAB【点睛】本题考查相似三角形的判定和性质、切线的性质、角平分线的定义、平行线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答6、 ( 1 )(,);( 2 )(,);( 3 )y=x2+2 ;( 4 )【分析】( 1 )根据点、的横坐标分别为、,可以先求的点和的坐标,平行线分线段成比例定理可以得到,然后即可得到点的坐标;( 2 ) 根据点的横坐标为 4 , 可以求得点的坐标, 然后根据相似三角形的判定与性质,可以求得点的坐标,再根据( 1
26、)求中点坐标的方法可以求得点的坐标;( 3 )根据相似三角形的判定与性质,可以求得点和点的坐标与点坐标的关系,从而可以得到与的关系;( 4 )将代入( 3 )中的函数关系式,可以求得点的横坐标的平方,然后根据勾股定理可以得到的长,再根据直角三角形斜边上的中线等于斜边的一半,即可得到线段的长【详解】解:( 1 )点、在抛物线上,点、的横坐标分别为、,当时,当时,即点的坐标为,点的坐标为,作轴于点,作轴于点,作轴于点,如图 1 所示,则,点为线段的中点,由平行线分线段成比例,可得,设点的坐标为,则,同理可得,点的坐标为,;( 2 )点在抛物线上,点的横坐标为 4 ,点的纵坐标为:,点的坐标为,作轴
27、于点,作轴于点,如图 2 所示,设点的坐标为,解得(舍去),点的坐标为,中点的横坐标为:,纵坐标为,线段中点的坐标为,;( 3 )作轴于点,作轴于点,如图 3 所示,由( 2 )知,设点的坐标为,点的坐标为,解得,点是线段的中点,即关于的函数解析式是;( 4 )当时,是直角三角形,点时斜边的中点,即线段的长是【点睛】本题是一道二次函数综合题目主要考查平行线分线段成比例定理、相似三角形的判定与性质、直角三角形的性质、中点坐标公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、填空题三、填空题1、 x 3【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负
28、数【详解】解: 代数式有意义,x 3 0 ,x 3 ,x 的取值范围是 x 3 ,故答案为 x 3 【点睛】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零2、 34【分析】根据等腰三角形的性质和三角形内角和,可以先计算出 ADB的度数,然后再根据AD=DC, ADB=C+DAC,即可得到 C的度数【详解】解: AB=AD,B=ADB,BAD=44 ,ADB=68 ,AD=DC, ADB=C+DAC,C=DAC=ADB=34 ,故答案为: 34 【点睛】本题考查等腰三角形的性质、三角形内角和定理,利用数形结合的思想解答是解答本题的关
29、键3、【分析】根据算术平方根、立方根、零指数幂、绝对值和负整数指数幂可以解答本题【详解】解:=故答案为:【点睛】本题考查算术平方根、立方根、零指数幂、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法4、 2cm2【分析】根据表格中的数据,可以先求出平均数,然后根据方差的计算方法代入数据计算即可【详解】解:,故答案为: 2cm2【点睛】本题考查方差,解答本题的关键是求出数据的平均数,明确方差的计算方法5、【分析】根据反比例函数的性质和,可以得到反比例函数的图象所在的象限和在每个象限内的增减性,然后即可判断、的大小关系【详解】解:反比例函数为常数),该函数图象在第一、三象限,在每个象限
30、内随的增大而减小,点、,、都在反比例函数为常数)的图象上,点、在第三象限,点在第一象限,故答案为:【点睛】本题考查反比例函数的性质,解答本题的关键是明确反比例函数的性质,会用反比例函数的性质判断函数值的大小关系,注意第三象限内点的纵坐标始终小于第一象限内点的纵坐标6、【分析】根据题意,首先以点A为旋转中心,顺时针旋转 APB到 APB ,旋转角是 60 ,作出图形,然后根据旋转的性质和全等三角形的性质、等边三角形的性质,可以得到PA+PB+PC=PP+PB+PC,再根据两点之间线段最短,可以得到PA+PB+PC的最小值就是CB 的值,然后根据勾股定理可以求得CB 的值,从而可以解答本题【详解】
31、解: 以点A为旋转中心, 顺时针旋转 APB到 APB , 旋转角是 60 , 连接BB 、PP ,如图所示,则 PAP=60 ,AP=AP ,PB=PB ,APP 是等边三角形,AP=PP ,PA+PB+PC=PP+PB+PC,PP+PB+PCCB ,PP+PB+PC的最小值就是CB 的值,即PA+PB+PC的最小值就是CB 的值,BAC=30 , BAB=60 ,AB=2 ,CAB=90 ,AB=2 ,AC=ABcosBAC=2cos30=,CB=,故答案为:【点睛】本题考查旋转的性质、等边三角形的性质、最短路径问题、勾股定理,解答本题的关键是作出合适的辅助线,得出PA+PB+PC的最小值就是CB 的值,其中用到的数学思想是数形结合的思想