信号与系统教案第6章.pps

上传人(卖家):罗嗣辉 文档编号:2040717 上传时间:2022-01-19 格式:PPS 页数:45 大小:820KB
下载 相关 举报
信号与系统教案第6章.pps_第1页
第1页 / 共45页
信号与系统教案第6章.pps_第2页
第2页 / 共45页
信号与系统教案第6章.pps_第3页
第3页 / 共45页
信号与系统教案第6章.pps_第4页
第4页 / 共45页
信号与系统教案第6章.pps_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-1 1 1页页页电子教案第六章第六章 离散系统离散系统z z域分析域分析 6.1 z 6.1 z 变换变换一、从拉普拉斯变换到一、从拉普拉斯变换到z变换变换二、收敛域二、收敛域6.2 z 6.2 z 变换的性质变换的性质6.3 6.3 逆逆z z变换变换6.4 z 6.4 z 域分析域分析一、差分方程的变换解一、差分方程的变换解二、系统的二、系统的z域框图域框图三、利用三、利用z变换求卷积和变换求卷积和四、四、s域与域与z域的关系域的关系五、离散系统的频率响应五、离散系统的频率响应点击目录点击目录 ,进入相关章节,进入相关

2、章节信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-2 2 2页页页电子教案第六章第六章 离散系统离散系统z z域分析域分析 在连续系统中,为了避开解微分方程的困难,可以在连续系统中,为了避开解微分方程的困难,可以通过拉氏变换把微分方程转换为代数方程。出于同样的通过拉氏变换把微分方程转换为代数方程。出于同样的动机,也可以通过一种称为动机,也可以通过一种称为z变换的数学工具,把差分变换的数学工具,把差分方程转换为代数方程。方程转换为代数方程。 6.1 z6.1 z变换变换一、从拉氏变换到一、从拉氏变换到z变换变换对连续信号进行均匀冲激取样后,就得到离散信号对连续信号进行均

3、匀冲激取样后,就得到离散信号: kTSkTtkTfttftf)()()()()(取样信号取样信号两边取双边拉普拉斯变换,得两边取双边拉普拉斯变换,得 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-3 3 3页页页电子教案kkTsSbkTfsFe)()(令令z = esT,上式将成为复变量,上式将成为复变量z的函数,用的函数,用F(z)表示;表示;f(kT) f(k) ,得,得kkzkfzF)()(称为序列称为序列f(k)的的双边双边z变换变换0)()(kkzkfzF称为序列称为序列f(k)f(k)的的单单边边z z变换变换若若f(k)为为因果序列因果序列,则单边、双边

4、,则单边、双边z 变换相等,否则不变换相等,否则不等。今后在不致混淆的情况下,统称它们为等。今后在不致混淆的情况下,统称它们为z变换变换。 F(z) = Zf(k) ,f(k)= Z-1F(z) ;f(k)F(z)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-4 4 4页页页电子教案6.1 z6.1 z变换变换二、收敛域二、收敛域 z变换定义为一无穷幂级数之和,显然只有当该幂级变换定义为一无穷幂级数之和,显然只有当该幂级数收敛,即数收敛,即kkzkf)(时,其时,其z变换才存在。上式称为变换才存在。上式称为绝对可和条件绝对可和条件,它是,它是序列序列f(k)的的z变换

5、存在的变换存在的充分必要条件充分必要条件。 收敛域的定义收敛域的定义: 对于序列对于序列f(k),满足,满足 kkzkf)(所有所有z值组成的集合称为值组成的集合称为z变换变换F(z)的收敛域的收敛域。 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-5 5 5页页页电子教案6.1 z6.1 z变换变换例例1求以下有限序列的求以下有限序列的z变换变换(1) f1(k)= (k) k=0 (2) f2(k)=1 , 2 , 3 , 2,1 解解(1) 1)()()(1kkkkzkzkzF 可见,其单边、双边可见,其单边、双边z变换相等。与变换相等。与z 无关,无关,所以其

6、收敛域为所以其收敛域为整个整个z 平面平面。 (2) f2(k)的双边的双边z 变换为变换为 F2(z) = z2 + 2z + 3 + 2z-1 + z-2 收敛域收敛域为为0 z 0 对有限序列的对有限序列的z变换的收敛域一般为变换的收敛域一般为0 z ,有时,有时它在它在0或或/和和也收敛。也收敛。 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-6 6 6页页页电子教案6.1 z6.1 z变换变换例例2 求求因果序列因果序列 0,0, 0)()(kakkakfkky的的z变换(式中变换(式中a为常数)。为常数)。 解:解:代入定义代入定义 1110101)(1l

7、im)(lim)(azazazzazFNNNkkNkkky可见,仅当可见,仅当 az-1 a =时,其时,其z变换存在。变换存在。 azzzFy)(RezjImz|a|o收敛域收敛域为为|z|z|a|信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-7 7 7页页页电子教案6.1 z6.1 z变换变换例例3 求求反因果序列反因果序列 的的z变换。变换。解解 ) 1(0, 00,)(kbkkbkfkkfzbzbzbzbbzzFNNmmkkf111111111)(lim)()()(可见,可见, b-1z 1,即即 z b 时,其时,其z变换存在,变换存在, bzzzFf)(收

8、敛域收敛域为为|z|z| |b|b|RezjImzo信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-8 8 8页页页电子教案6.1 z6.1 z变换变换例例4 双边序列双边序列f(k)=fy(k)+ff(k)= 解解 0,0,kakbkk的的z变换。变换。azzbzzzFzFzFfy)()()(可见,其收敛域为可见,其收敛域为 a z b (显然要求(显然要求 a 2 f2(k)= 2k ( k 1)F2(z)=2zz, z 0 (k)1zz, z 1, z 1 ( k 1)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-101010页页页电子教

9、案6.2 z6.2 z变换的性质变换的性质一、线性一、线性 6.2 z6.2 z变换的性质变换的性质 本节讨论本节讨论z变换的性质,若无特殊说明,它既适变换的性质,若无特殊说明,它既适用于单边也适用于双边用于单边也适用于双边z变换。变换。 若若 f1(k)F1(z) 1 z 1, f2(k) F2(k) 2 z 1信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-111111页页页电子教案6.2 z6.2 z变换的性质变换的性质二、移位(移序)特性二、移位(移序)特性 单边、双边差别大!单边、双边差别大!双边双边z变换的移位:变换的移位: 若若 f(k) F(z) , z

10、 0,则,则 f(k m) z mF(z), z ,且有整数,且有整数m0, 则则f(k-1) z-1F(z) + f(-1)f(k-2) z-2F(z) + f(-2) + f(-1)z-1 10)()()(mkkmzmkfzFzmkf信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-121212页页页电子教案6.2 z6.2 z变换的性质变换的性质f(k+1) zF(z) f(0)zf(k+2) z2F(z) f(0)z2 f(1)z 10)()()(mkkmmzkfzFzmkf证明证明:Zf(k m)= mmkmkmkkkkzzmkfzmkfzmkf10)(0)()

11、()(上式第二项令上式第二项令k m=n)()()()(10100zFzzmkfzznfzmkfmmkkmmknnk特例特例:若若f(k)为因果序列,则为因果序列,则f(k m) z-mF(z)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-131313页页页电子教案6.2 z6.2 z变换的性质变换的性质例例1:求周期为求周期为N的有始周期性单位序列的有始周期性单位序列 0)(mmNk 的的z变换。变换。 111)(00NNNmmNmzzzzmNk解解 z 1例例2:求求f(k)= k(k)的单边的单边z变换变换F(z). 解解f(k+1)= (k+1)(k+1) =

12、 (k+1)(k) = f(k) + (k) zF(z) zf(0) = F(z) + 1zzF(z)=2) 1( zz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-141414页页页电子教案6.2 z6.2 z变换的性质变换的性质三、序列乘三、序列乘a ak k( (z z域尺度变换域尺度变换) ) 若若 f(k) F(z) , z , 且有常数且有常数a 0 则则 akf(k) F(z/a) , a z a 证明证明:Zakf(k)= )()()(azFazkfzkfakkkkk例例1:ak(k) azz例例2:cos( k)(k) ? cos( k)(k)=0.

13、5(ej k+ e-j k)(k) jje5 . 0e5 . 0zzzz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-151515页页页电子教案6.2 z6.2 z变换的性质变换的性质四、卷积定理四、卷积定理 若若 f1(k) F1(z) 1 z 1, f2(k) F2(z) 2 z 2 则则 f1(k)*f2(k) F1(z)F2(z) 对单边z变换,要求f1(k)、 f2(k)为因果序列其收敛域一般为其收敛域一般为F1(z)与与F2(z)收敛域的相交部分。收敛域的相交部分。 例例:求求f(k)= k(k)的的z变换变换F(z). 解解: f(k)= k(k)= (

14、k)* (k-1)21) 1(11zzzzzzz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-161616页页页电子教案6.2 z6.2 z变换的性质变换的性质五、序列乘五、序列乘k k(z z域微分)域微分) 若若 f(k) F(z) , z 则则 )(dd)(zFzzkkf, z 例例:求求f(k)= k(k)的的z变换变换F(z). 解解:1)(zzk22) 1() 1() 1(1dd)(zzzzzzzzzzkk信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-171717页页页电子教案6.2 z6.2 z变换的性质变换的性质六、序列除六、

15、序列除(k+m)(z(k+m)(z域积分)域积分) 若若 f(k) F(z) , z 0, 则则zmmdFzmkkf1)()(, z 0,则,则 zdFkkf)()(例例:求序列求序列 的的z变换。变换。 )(11kk解解1)(zzk)1ln()1ln()111() 1()(112zzzzdzdzkkzzz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-181818页页页电子教案6.2 z6.2 z变换的性质变换的性质七、七、k k域反转域反转( (仅适用双边仅适用双边z z变换变换) 若若 f(k) F(z) , z 则则 f( k) F(z-1) , 1/ z a求

16、求a k ( k 1)的的z变换。变换。 解解11) 1(11zazzzkakazkak111) 1(,|z| a,|z| 1/a乘乘a得得 azakak1) 1(,|z| 1/a信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-191919页页页电子教案6.2 z6.2 z变换的性质变换的性质八、部分和八、部分和 若若 f(k) F(z) , z ,则,则)(1)(zFzzifki, max( ,1) z max(|a|,1)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-202020页页页电子教案6.2 z6.2 z变换的性质变换的性质九、初值

17、定理和终值定理九、初值定理和终值定理 初值定理适用于初值定理适用于右边序列右边序列,即适用于,即适用于kM(M为整数为整数)时时f(k)=0的序列。它用于由象函数直接求得序列的初值的序列。它用于由象函数直接求得序列的初值f(M),f(M+1),,而不必求得原序列。,而不必求得原序列。 初值定理初值定理: 如果序列在如果序列在kM时,时,f(k)=0,它与象函数的关系为,它与象函数的关系为 f(k)F(z) , z 则序列的初值则序列的初值)(lim)(zFzMfmz对因果序列对因果序列f(k),)(lim)0(zFfz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-21

18、2121页页页电子教案6.2 z6.2 z变换的性质变换的性质证明:证明:.)2() 1()()()()()2()1(MMMMkkkkzMfzMfzMfzkfzkfzF两边乘两边乘zM得得zMF(z) = f(M) + f(M+1)z-1 + f(M+2)z-2+)(lim)(zFzMfmz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-222222页页页电子教案6.2 z6.2 z变换的性质变换的性质终值定理终值定理: 终值定理适用于右边序列,用于由象函数直接求得序终值定理适用于右边序列,用于由象函数直接求得序列的终值,而不必求得原序列。列的终值,而不必求得原序列。

19、如果序列在如果序列在kM时,时,f(k)=0,它与象函数的关系为,它与象函数的关系为 f(k) F(z) , z 且且01 则序列的终值则序列的终值 )() 1(lim)(1lim)(lim)(11zFzzFzzkffzzk含单位圆含单位圆信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-232323页页页电子教案6.3 6.3 逆逆z z变换变换6.3 6.3 逆逆z z变换变换求逆求逆z变换的方法有:变换的方法有:幂级数展开法幂级数展开法、部分分式展开部分分式展开法法和和反演积分(留数法)反演积分(留数法)等。等。 一般而言,双边序列一般而言,双边序列f(k)可分解为

20、因果序列可分解为因果序列f1(k)和反和反因果序列因果序列f2(k)两部分,即两部分,即 f(k) = f2(k)+f1(k) = f(k) (k 1) + f(k) (k)相应地,其相应地,其z变换也分为两部分变换也分为两部分 F(z) = F2(z) + F1(z), |z| F2(z)=Zf(k) (k 1)= 1)(kkzkf,|z| 2 (2) |z| 1 (3) 1 |z| 2 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-252525页页页电子教案6.3 6.3 逆逆z z变换变换解解(1) 由于由于F(z)的收敛域在半径为的收敛域在半径为2的圆外,故的

21、圆外,故f(k)为因果序列。用长除法将为因果序列。用长除法将F(z)展开为展开为z-1的幂级数:的幂级数: z2/ /(z2-z-2)=1+ z-1 + 3z-2 + 5z-3 + f(k)=1,1,3,5, k=0(2) 由于由于F(z)的收敛域为的收敛域为 z 1,故,故f(k)为反因果序为反因果序列。用长除法将列。用长除法将F(z)(按升幂排列)展开为(按升幂排列)展开为z的幂级数的幂级数: z2/ /( 2 z z2)=5432165834121zzzz10 ,21,41,83,165, 0)(kkf信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-262626页

22、页页电子教案6.3 6.3 逆逆z z变换变换(3) F(z)的收敛域为的收敛域为1 z 1 232)(2zzzF, z ) )和和F F2 2(z)(z)( z z 2 (2) z 1 (3) 1 z 2,故,故f(k)为因果序列为因果序列 )()2(32) 1(31)(kkfkk(2) 当当 z 1,故,故f(k)为反因果序列为反因果序列 ) 1()2(32) 1(31)(kkfkk(3)当当1 z 2, ) 1()2(32)() 1(31)(kkkfkk信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-292929页页页电子教案6.3 6.3 逆逆z z变换变换例例

23、2:已知象函数已知象函数 )3)(2)(1)(21()1294()(23zzzzzzzzzzF,1 z 1,后两,后两项满足项满足 z , f(k)=2 K1kcos( k+ ) (k)若若 z 1),则逆变换为,则逆变换为 razz)( 若若 z ,对应原序列为对应原序列为 )()!1()2).(1(1karrkkkrk信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-313131页页页电子教案6.3 6.3 逆逆z z变换变换以以 z 为例:为例:当当r=2时,为时,为 kak-1 (k)当当r=3时,为时,为 )() 1(212kakkk可这样推导记忆可这样推导记忆

24、: Zak (k)=azz两边对两边对a求导得求导得 Zkak-1 (k)= 2)(azz再对再对a求导得求导得Zk(k-1)ak-2 (k)=3)(2azz故故Z0.5k(k-1)ak-2 (k)=3)(azz信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-323232页页页电子教案6.3 6.3 逆逆z z变换变换例例:已知象函数已知象函数323) 1()(zzzzF, z 1的原函数。的原函数。解解1) 1() 1() 1()(1321231132zKzKzKzzzzzF2)() 1(1311zzzFzK3)() 1(dd1312zzzFzzK1)() 1(dd2

25、1132213zzzFzzK1) 1(3) 1(2)(23zzzzzzzFf(k)=k(k-1)+3k+1 (k)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-333333页页页电子教案6.4 z6.4 z域分析域分析6.4 z6.4 z域分析域分析 单边单边z变换将系统的初始条件自然地包含于其代数变换将系统的初始条件自然地包含于其代数方程中,可求得零输入、零状态响应和全响应。方程中,可求得零输入、零状态响应和全响应。 一、差分方程的变换解一、差分方程的变换解 mjjmniinjkfbikya00)()(设设f(k)在在k=0时接入,系统初始状态为时接入,系统初始状态

26、为y(-1),y(-2),y(-n)。 取单边取单边z变换得变换得 mjjjminiikiinzFzbzikyzYza0010)()()(mjjjmniniikkiniinzFzbzikyazYza00010)()()()(信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-343434页页页电子教案6.4 z6.4 z域分析域分析)()()()()()()()(zYzYzFzAzBzAzMzYfx)()()()()(zAzBzFzYzHf令令称为系统函数称为系统函数h(k)H(z) 例例1:若某系统的差分方程为若某系统的差分方程为 y(k) y(k 1) 2y(k 2)=

27、 f(k)+2f(k 2)已知已知y( 1)=2,y( 2)= 1/2,f(k)= (k)。求系统的。求系统的yx(k)、yf(k)、y(k)。 解解方程取单边方程取单边z变换变换 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-353535页页页电子教案6.4 z6.4 z域分析域分析Y(z)-z-1Y(z)+y(-1)-2z-2Y(z)+y(-2)+y(-1)z-1=F(z)+2z-2F(z) 12224)(212121)2(2) 1()21 ()(2222212211zzzzzzzzzzFzzzzzyyzzY)() 1()2(2)(122) 1)(2(4)(2kk

28、yzzzzzzzzzYkkxx)(23) 1(212)(12312122)(1kkyzzzzzzzYkkff信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-363636页页页电子教案6.4 z6.4 z域分析域分析例例2: 某系统,已知当输入某系统,已知当输入f(k)=( 1/2)k (k)时,其零时,其零状态响应状态响应 )()21(29)31(4)21(23)(kkykkkf求系统的单位序列响应求系统的单位序列响应h(k)和描述系统的差分方程。和描述系统的差分方程。 解解31221361612)()()(22zzzzzzzzzFzYzHfh(k)=3(1/2)k 2

29、( 1/3)k (k) ) 1(2)()2(61) 1(61)(kfkfkykyky信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-373737页页页电子教案6.4 z6.4 z域分析域分析二、系统的二、系统的z z域框图域框图 f (k)Df (k -1)F(z)z1)(1zFz另外两个基本单元:数乘器和加法器,另外两个基本单元:数乘器和加法器,k域和域和z域框图域框图相同。相同。信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-383838页页页电子教案6.4 z6.4 z域分析域分析例例3: 某系统的某系统的k域框图如图,已知输入域框图如图,

30、已知输入f(k)= (k)。(1) 求系统的单位序列响应求系统的单位序列响应h(k)和零状态响应和零状态响应yf(k)。(2) 若若y(-1)=0,y(-2)=0.5 ,求零输入响应,求零输入响应yx(k)DDf (k)y(k)1332解解:(1)画画z域框图域框图z-1z-1F(z)Yf(z)设中间变量设中间变量X(z)X(z)z-1X(z)z-2X(z)X(z)=3z-1X(z) 2z-2X(z) +F(z)(2311)(21zFzzzXYf(z)=X(z) 3z-1X(z)= ( 1 3z-1)X(z)信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-393939页

31、页页电子教案6.4 z6.4 z域分析域分析)(23131)(211zFzzzzYf21223323131)(22211zzzzzzzzzzzzHh(k) = 2 (2)k (k)当当f(k)= (k)时,时,F(z)= z/(z-1)2213) 1(2)2() 1() 3(1233)(22222zzzzzzzzzzzzzzzzzYfyf(k) = 2k + 3 2 (2)k (k)(2)由由H(z)可知,差分方程的特征根为可知,差分方程的特征根为 1=1, 2=2信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-404040页页页电子教案6.4 z6.4 z域分析域分析

32、yx(k) = Cx1 + Cx2 (2)k由由y(-1)=0,y(-2)=0.5,有,有Cx1 + Cx2 (2)-1= 0Cx1 + Cx2 (2)-2= 0.5Cx1 =1, Cx2 = - 2yx(k) = 1 2 (2)k三、利用三、利用z z变换求卷积和变换求卷积和 例例:求:求2k (k)*2-k (k)解解:5 . 0| ,5 . 0)(2zzzkk2| ,225 . 0)(211zzzzkk原式象函数为原式象函数为2345 . 034)2)(5 . 0(2zzzzzzz原式原式=) 1()2(34)()5 . 0(34kkkk1* 2-k (k)?信号与系统信号与系统西安电子

33、科技大学电路与系统教研中心第第第6-6-6-414141页页页电子教案6.4 z6.4 z域分析域分析四、四、s s域与域与z z域的关系域的关系 z=esT zTsln1式中式中T为取样周期为取样周期如果将如果将s表示为直角坐标形式表示为直角坐标形式 s = +j ,将将z表表示为极坐标形式示为极坐标形式 z = ej = e T , = T由上式可看出由上式可看出: s平面的左半平面(平面的左半平面( z平面的单平面的单位圆内部(位圆内部( z = 0)-z平面的单位圆外部平面的单位圆外部( z = 1) s平面的平面的j 轴(轴( =0)-z平面中的单位圆上(平面中的单位圆上( z =

34、=1) s平面上实轴(平面上实轴( =0)-z平面的正实轴(平面的正实轴( =0)s平面上的原点(平面上的原点( =0, =0)-z平面上平面上z=1的点的点( =1, =0) 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-424242页页页电子教案6.4 z6.4 z域分析域分析五、离散系统的频率响应五、离散系统的频率响应 由于由于z = esT , s= +j ,若离散系统,若离散系统H(z)收敛域含单收敛域含单位园,则位园,则若连续系统的若连续系统的H(s)收敛域含虚轴,则连续系统频率响应收敛域含虚轴,则连续系统频率响应j)()(jssHHTzzHje)(离散系

35、统频率响应定义为离散系统频率响应定义为存在。存在。令令 T = ,称为数字角频率。,称为数字角频率。jej)()(ezzHH)(jjje)(e)(eHH式中式中 H(ej ) 称为幅频响应称为幅频响应,偶函数;偶函数; ( )称为相频响应。称为相频响应。 只有只有H(z)收敛域收敛域含单位园才存在含单位园才存在频率响应频率响应信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-434343页页页电子教案6.4 z6.4 z域分析域分析设设LTI离散系统的单位序列响应为离散系统的单位序列响应为h(k),系统函数为系统函数为H(z),其收敛域含单位园,则系统的零状态响应,其收敛

36、域含单位园,则系统的零状态响应 yf(k)=h(k)*f(k) )()(ikfihi当当f(k)=ej k时时iikikifihihky)(e)(ee)()(jj)(j)(eejjHk若输入若输入f(k)=Acos( k+ )则其正弦稳态响应为则其正弦稳态响应为ys(k)= 0.5A ej ej k H(ej ) + + 0.5A e-j e-j k H(ej )= 0.5A ej ej k |H(ej )|ej ( ) + + 0.5A e-j e-j k |H(e-j )| e-j ( ) =A |H(ej )| cos k + + + ( ) = 0.5Aej k ej + + 0.5A

37、e-j k e-j 信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-444444页页页电子教案6.4 z6.4 z域分析域分析例例 图示为一横向数字滤波器。图示为一横向数字滤波器。(1)求滤波器的频率响应;)求滤波器的频率响应;(2)若输入信号为连续信号)若输入信号为连续信号f(t)=1+2cos( 0t)+3cos(2 0t)经取样得到的离散序列经取样得到的离散序列f(k),已知信号频率,已知信号频率f0=100Hz,取样取样fs=600Hz,求滤波器的稳态输出,求滤波器的稳态输出yss(k) 1z1z1z1122F(z)Y(z)解解 (1)求系统函数)求系统函数Y(

38、z)=F(z)+2z-1F(z)+2z-2F(z)+z-3F(z) H(z)=1+2z-1+2z-2+z-3 ,|z|0令令 = TS,z取取e j H(ej ) =1+ 2e-j +2e-j2 + e-j3 =e-j1.5 2cos(1.5 ) )+ 4cos(0.5 )信号与系统信号与系统西安电子科技大学电路与系统教研中心第第第6-6-6-454545页页页电子教案6.4 z6.4 z域分析域分析(2)连续信号连续信号f(t) =1+2cos( 0t)+3cos(2 0t) 经取样后的离散信号为经取样后的离散信号为(f0=100Hz,fs=600Hz ) f(k)=f(kTs)= 1+2cos(k 0Ts)+3cosk(2 0Ts) 令令 1=0 , 2= 0Ts= /3 , 3=2 0Ts= 2 /3 所以所以 H(ej 1)=6 ,H(ej 2)=3.46e-j /2 , H(ej 3)= 0 稳态响应为稳态响应为 yss(t)= H(ej 1)+2 H(ej 2) cosk 0Ts+ ( 2) +3 H(ej 3) cos2k 0Ts+ ( 3) = 6 + 6.92cos(k /3- /2) 可见消除了输入序列的二次谐波。可见消除了输入序列的二次谐波。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(信号与系统教案第6章.pps)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|