1、直角三角形全等的判定直角三角形全等的判定HL黄士琪1ppt课件忆一忆1 1、全等三角形的对应边、全等三角形的对应边 -,对,对应角应角-相等相等相等相等2 2、判定三角形全等的方法有:、判定三角形全等的方法有:SAS、ASA、SSS、AAS直直角角边边直角边直角边斜边斜边再忆再忆直角三角形直角三角形RtRtABCABC2ppt课件直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角
2、形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定直角三角形全等的判定3ppt课件 舞台背景的形状是两个直角三角形,工作人舞台背景的形状是两个直角三角形,工作人员想知道两个直角三角形是否全等,但每个三员想知道两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住角形都有一条直角边被花盆遮住, ,无法测量。无法测量。(1)你能帮他想个办法吗?你能帮他想个办法吗?根据根据SAS可测量其余两边与这两边的夹角。可测量其余两边与这两边的夹角。根据根据ASA、AAS可测量对应一边和一锐角可测量对应一边和一锐角4ppt课件 你相信这个结论吗
3、?你相信这个结论吗?(2)如果他只带一个卷尺,能完成这个任务吗)如果他只带一个卷尺,能完成这个任务吗?下面,让我们来验证这个下面,让我们来验证这个结论结论。斜边和一条直角边对应相等斜边和一条直角边对应相等两个两个直角三角形全等直角三角形全等? ?5ppt课件用三角板和圆规,画一个用三角板和圆规,画一个RtABC,使得使得C=90,一直角边一直角边CA=4cm,斜边斜边AB=5cm.ABC5cm4cm6ppt课件Step1:画MCN=90;CNM7ppt课件Step1:画MCN=90;CNMStep2:在射线CM上截取CA=4cm;A8ppt课件Step1:画MCN=90;Step2:在射线CM
4、上截取CA=4cm;Step3:以A为圆心,5cm为半径画弧,交射线CN于B;CNMAB9ppt课件Step1:画MCN=90;CNMStep2:在射线CM上截取CA=4cm;BStep3:以A为圆心,5cm为半径画弧,交射线CN于B;AStep4:连结AB;ABC即为所要画的三角形10ppt课件把我们刚画好的直角三角形剪下来,和同桌的比把我们刚画好的直角三角形剪下来,和同桌的比比看,这些直角三角形有怎样的关系呢?比看,这些直角三角形有怎样的关系呢?11ppt课件RtABCCBARt ABC5cm4cmAB C 5cm4cm12ppt课件有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一
5、条直角边对应相等的两个直角三角形全等.简写成简写成“斜边、直角边斜边、直角边”或或“HL”13ppt课件(HL)ABCA BC 在RtABC和Rt 中AB=BC=RtABCCBABACB(HL)CBARt C=C=90有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等.14ppt课件1.1.一个锐角及这个锐角的对边对应相等的两个直一个锐角及这个锐角的对边对应相等的两个直角三角形角三角形. .全等全等 (AAS)15ppt课件2.2.一个锐角及这个锐角相邻的直角边对应相等一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形的两个直角三角形. .全等全等
6、( ASA)16ppt课件3.3.两直角边对应相等的两个直角三角形两直角边对应相等的两个直角三角形. .全等全等 ( SAS)17ppt课件4.4.有两边对应相等的两个直角三角形有两边对应相等的两个直角三角形. .全等全等情况情况1:全等:全等情况情况2:全等:全等(SAS)( HL)18ppt课件已知:如图,已知:如图, ABC中,中,AB=AC,AD是高是高求证求证:BD=CD ;BAD=CAD。ABCD RtADB RtADC(HL)证明:证明:AD是高是高 ADB=ADC=90 在在RtADB和和RtADC中中AB=AC(已知)(已知)AD=AD(公共边)(公共边)BD=CD,BAD=
7、CAD等腰三角形三线合一等腰三角形三线合一19ppt课件已知:如图已知:如图,在在ABC和和ABD中,中,ACBC, ADBD,垂足分别为垂足分别为C,D,AD=BC,求证:求证: ABC BAD.ABDC证明:证明: ACBC, ADBD C=D=90 在在RtABC和和RtBAD中中 ( 公 共 边 )( 已 知 )ABBABCAD RtABC RtBAD (HL)A20ppt课件已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFABCPDEFQBAC=EDF, AB=DE,B=E分析:分
8、析: ABC DEFRtABP RtDEQAB=DE,AP=DQ21ppt课件ABCPDEFQ证明:证明:AP、DQ是是ABC和和DEF的高的高 APB=DQE=90 在在RtABP和和RtDEQ中中AB=DEAP=DQRtABP RtDEQ (HL) B=E 在在ABC和和DEF中中BAC=EDF AB=DEB=EABC DEF (ASA)22ppt课件已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFABCPDEFQ变式变式1:若把:若把BACEDF,改为改为BCEF ,ABC与与DEF全
9、等吗?请说明思路。全等吗?请说明思路。23ppt课件已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFABCPDEFQ变式变式1:若把:若把BACEDF,改为改为BCEF ,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式2:若把:若把BACEDF,改为改为AC=DF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。24ppt课件已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:AB
10、C DEFABCPDEFQ变式变式1:若把:若把BACEDF,改为改为BCEF ,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式2:若把:若把BACEDF,改为改为AC=DF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式3:请你把例题中的:请你把例题中的BACEDF改改为另一个适当条件,使为另一个适当条件,使ABC与与DEF仍能仍能全等。试证明。全等。试证明。25ppt课件直角三角直角三角形全等的形全等的判定判定一般三角一般三角形全等的形全等的判定判定“SAS” “ ASA ” “ AAS ” “ SSS ”“ SAS ”“ ASA ” “ AAS ”“
11、HL ”灵活运用各种方法证明直角三角形全等灵活运用各种方法证明直角三角形全等“ SSS ”26ppt课件已知已知: :如图如图,D,D是是ABCABC的的BCBC边上的中边上的中点点,DEAC,DFAB,DEAC,DFAB,垂足分别为垂足分别为E E、F,F,且且DE=DF.DE=DF.w求证求证: : ABCABC是等腰三角形是等腰三角形. . DBCAFE学以致用学以致用27ppt课件如图,有两个长度相同的滑梯,左边滑如图,有两个长度相同的滑梯,左边滑梯的高度梯的高度AC与右边滑梯水与右边滑梯水平平方向的长度方向的长度DF相等,两个滑梯的倾斜角相等,两个滑梯的倾斜角ABCABC和和DEFDEF大小大小有什么关系?有什么关系?学以致用学以致用l先把它转化为一个纯数学问题先把它转化为一个纯数学问题: :l已知已知: :如图如图,AC=DF,ACAB,DEDF,AC=DF,ACAB,DEDF,BC=EFBC=EF。l求证求证:ABC=DEF.:ABC=DEF.28ppt课件P109 练习练习 1、229ppt课件