1、3/20/2022数理金融 张元萍 编著1数 理 金 融 第一章 数理金融引论 第二章 数理金融基本数学方法 第三章 计量经济学在数理金融中的应用 第四章 资产组合理论与资本资产定价模型 第五章 布莱克方程与期权定价模型 第六章 金融风险分析与测度 第七章 外汇交易测度与汇率决定模型 第八章 效率市场理论及检验3/20/2022数理金融 张元萍 编著2第一章数理金融引论 第一节 数理金融的发展沿革 第二节 数理金融的结构框架 第三节 数理金融面临的挑战3/20/2022数理金融 张元萍 编著3第一节数理金融的发展沿革 一、数理金融的相关机理 在现代的金融交易中,任何一项金融决策特别是金融交易的
2、决策都要面对许多不确定性因素,这些不确定性因素都将影响并反映在金融产品的风险与收益上,因此,任何金融决策都必须在权衡收益与风险之后才能做出抉择。所以,如何精确地度量金融交易过程中的收益和风险,就成为金融交易决策的核心。为使决策做到科学和精确,就必须对各种不确定性因素进行定量分析,这种现实和不断发展的需求促进了数学在金融活动中的应用和发展,从而衍生出数理金融学这一新的学科。3/20/2022数理金融 张元萍 编著4第一节数理金融的发展沿革 二、数理金融的发展阶段 数理金融学是20世纪后期迅速发展起来的一门学科。数理金融学的迅速发展,是现代金融实践发展推动的结果。3/20/2022数理金融 张元萍
3、 编著5第一节数理金融的发展沿革 第 一 个 时 期 为 发 展 初 期 , 代 表 人 物 有 阿 罗(KArrow),德布鲁(G. Debreu),林特纳(JLintner),夏普(W.Sharp),莫迪利亚尼(FModigliani)。1954年阿罗和德布鲁在他们发表的论文中研究了竞争体制下均衡的存在性。3/20/2022数理金融 张元萍 编著6第一节数理金融的发展沿革 第二个时期为19691979年十年间这十年是数理金融发展的黄金时代,主要代表人物有莫顿(RMerton),布莱克(FB1ack),斯科尔斯(M. Scholes),考克斯(JCox),罗斯(S.Ross),鲁宾斯坦(M.
4、 Rubinstein),莱克(SLekoy),卢卡斯(DLucas),布利登(DBreeden)哈里森(J.M.Harrison)。莫顿用动态规划方法找到了连续时间模型下最优消费与投资决策的简明解3/20/2022数理金融 张元萍 编著7第一节数理金融的发展沿革 1980年至今是数理金融发展的第三个时期,是成果倍出、成熟完善的时期随着理论研究的深入,假设条件已大大减弱,各种各样的问题在哈里森和克里普斯的模型下已变得越来越统一 3/20/2022数理金融 张元萍 编著8第二节 数理金融的结构框架 一 、 微 观 金 融 学 与 宏 观 金 融 学 微观金融学主要考虑金融现象的微观基础。如同微观
5、经济学,它实质上也是一种价格理论,它研究如何在不确定情况下,通过金融市场,对资源进行跨期最优配置,这也意味着它必然以实现市场均衡和获得合理金融产品价格体系为其理论目标和主要内容。3/20/2022数理金融 张元萍 编著9第二节 数理金融的结构框架 宏观金融学研究在一个以货币为媒介的市场经济中,如何获得高就业,低通货膨胀,国际收支平衡和经济增长。可以认为宏观金融学是宏观经济学(包括开放条件下)的货币版本。3/20/2022数理金融 张元萍 编著10第二节 数理金融的结构框架 二 、 数 理 金 融 在 金 融 学 科 体 系 中 的 地 位 数理金融与其说它是一门独立的学科倒不如说它是做为一种方
6、法存在。它主要使用一切可能的数学方法,来研究几乎一切金融问题,特别是复杂产品定价和动态市场均衡。3/20/2022数理金融 张元萍 编著11第二节 数理金融的结构框架 类似的还有金融市场计量经济学,本质上它属于计量经济学:基于实际数据,以统计计量的方法为各种金融模 型 和 理 论 提 供 效 验 ( 验 伪 ) 手 段 和 方 法 。3/20/2022数理金融 张元萍 编著12第二节 数理金融的结构框架 三、数理金融的结构框架 本书的框架结构和基本内容主要从以下几个方面展开。 第一部分是数理金融方法篇,阐述了数理金融的基本数学方法和计量经济学在数理金融中的应用。3/20/2022数理金融 张元
7、萍 编著13第二节 数理金融的结构框架 第二部分是数理金融方法核心篇。阐述了资本资产定价模型和期权定价模型。 第三部分是数理金融应用篇。阐述了数理金融在货币市场、外汇市场、证券市场的应用。3/20/2022数理金融 张元萍 编著14第三节 数理金融面临的挑战 一、行为金融学对数理金融学争论的起点1.红利困惑2.弗里德曼萨维奇困惑3.赢者输者效应4.惯性效应5.投资者情绪效应3/20/2022数理金融 张元萍 编著15第三节 数理金融面临的挑战 二对有效市场及投资者理性的质疑1.质疑之一:人的行为假设。2.质疑之二:有效市场的假设。3/20/2022数理金融 张元萍 编著16第三节 数理金融面临
8、的挑战 三、 行为金融学研究的重点 1有限理性2过度自信 3后悔规避4锚定效应 3/20/2022数理金融 张元萍 编著17第三节 数理金融面临的挑战 5思维分隔或思维账户6赌博与投机行为7参考点8典型启示3/20/2022数理金融 张元萍 编著18第三节 数理金融面临的挑战 四、行为金融学对异常现象的解释1、红利困惑。 行为金融学运用“心理账户、“不完善的自我控制”和“后悔厌恶”进行了分析。3/20/2022数理金融 张元萍 编著19第三节 数理金融面临的挑战 2、弗里德曼萨维奇困惑 行为金融学认为弗里德曼萨维奇困惑是由于投资者对待不同的心理账户有不同的风险态度。3/20/2022数理金融
9、张元萍 编著20第三节 数理金融面临的挑战 3、赢者输者效应 赢者输者效应的产生在于代表性启发式,即投资者依赖于过去的经验法则进行判断,并将这种判断外推至将来。3/20/2022数理金融 张元萍 编著21第三节 数理金融面临的挑战 4惯性效应 行为金融认为惯性效应产生的根源在于保守、锚定、过度自信和显著性所导致的一种启发式偏差:反应不足。3/20/2022数理金融 张元萍 编著22第三节 数理金融面临的挑战 5投资者情绪效应 投资者的心理预期并不完全跟随有关股票基本价值的信息变动而变动,而是受到过去收益率的重要影响。3/20/2022数理金融 张元萍 编著23第三节 数理金融面临的挑战 五、行
10、为金融学对数理金融学争论的新发展1、行为组合理论(BPT)2、行为资产定价模型 (BAPM)3/20/2022数理金融 张元萍 编著24第二章数理金融基本数学方法 第一节 函数和微分在数理金融中的应用 第二节 线性代数在数理金融中的应用 第三节 随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著25第一节 函数和微分在数理金融中的应用一、数理金融中的指数和对数函数 1、连续复利和实际利率 给定本金 P,每年以利率i复利一次,t 年底终值 F 由指数函数确定。 (1)tFPi 3/20/2022数理金融 张元萍 编著26第一节 函数和微分在数理金融中的应用如果每年复利 m 次,t
11、 年后终值为 -(1)mtiFPm 3/20/2022数理金融 张元萍 编著27第一节 函数和微分在数理金融中的应用如果利率为 100%,一年内连续复利,终值为 FPlimm1mtimPe 3/20/2022数理金融 张元萍 编著28第一节 函数和微分在数理金融中的应用对于非 100%的利率 r,及非一年的时期 t,终值为 rtF=Pe 对于复增长率,如折旧或贬值,公式中的i或 r 为负数。 3/20/2022数理金融 张元萍 编著29第一节 函数和微分在数理金融中的应用2、实际利率与名义利率 多 次 复 利 的 实 际 年 利 率ei:(1)1meiim 连续复利的实际年利率:1reie 3
12、/20/2022数理金融 张元萍 编著30第一节 函数和微分在数理金融中的应用3、银行按揭贷款 银行按揭可归结为数学问题:贷款 P 元,年利率为 r,分 n 期等额偿还 21.11(1)(1)1nnAAAAPiiiii3/20/2022数理金融 张元萍 编著31第一节 函数和微分在数理金融中的应用11nPiAi 上述公式即为银行按揭的数学模型,又称资金还原公式。 3/20/2022数理金融 张元萍 编著32第一节 函数和微分在数理金融中的应用11nii 称为资金还原系数,常用(/, , )A P i n表示。可查复利表计算。 3/20/2022数理金融 张元萍 编著33第一节 函数和微分在数理
13、金融中的应用4、分期付款 分期付款的形式有多种: (1)成交时取货,企业需计算现值; (2)货款付清后取货,消费者计算终值; (3)向银行借款购买商品,以后分期偿还银行借款; (4)分期付款在半途变更付款条件。 3/20/2022数理金融 张元萍 编著34第一节 函数和微分在数理金融中的应用5、银行贴现 企业间存在商业信用,企业可以签发远期汇票,当未到期汇票的持有者向银行要求兑现,就需要计算贴息额和兑现额。 3/20/2022数理金融 张元萍 编著35第一节 函数和微分在数理金融中的应用设票面金额为 S, 离到期时间为 n天,日息为 R,则应得兑现额为:11SPnR 3/20/2022数理金融
14、 张元萍 编著36第一节 函数和微分在数理金融中的应用银 行 实 际 业 务 贴 付 利 息 为ISnR, 实得 兑现额 为2(1)PSISnR 3/20/2022数理金融 张元萍 编著37第一节 函数和微分在数理金融中的应用6、利用指数、对数函数计算时间最优问题。 3/20/2022数理金融 张元萍 编著38第一节 函数和微分在数理金融中的应用 二、数理金融中微分方法的运用 1、边际效用函数的分析 在金融学中,边际成本定义为:一单位额外产出所引起的总成本的改变量。边际收益定义为:一单位额外销售量所引起的总收益的改变量。由于总成本(TC)和总收益(TR)都是产出量水平(Q)的函数,边际成本(M
15、C)和边际收益(MR)都可以从数学角度用微分表示。3/20/2022数理金融 张元萍 编著39第一节 函数和微分在数理金融中的应用 2、经济函数最优化 金融部门经常要考察企业部门,希望利润,产出水平和生产率尽可能大,而成本,污染程度,稀缺自然资源的利用尽可能的小,因而要作出经济函数的最优判断。3/20/2022数理金融 张元萍 编著40第一节 函数和微分在数理金融中的应用 3、划拨价格的决定机制 在国际投资中划拨价格是从事跨国公司经营的企业系统内部(母公司与子公司之间,子公司与子公司之间)买卖中间产品时所执行的价格。它应以中间产品成本为基础,且同时满足母公司与子公司的利润最大化。3/20/20
16、22数理金融 张元萍 编著41第一节 函数和微分在数理金融中的应用划拨价格制定的条件式: 1111()dPMCNMRMRMCMP 2222()dPMCNMRMRMCMP 3/20/2022数理金融 张元萍 编著42第一节 函数和微分在数理金融中的应用 三、数理金融中积分方法的运用 1、 净投资时间积分的测度 2、 消费者剩余和生产者剩余的测度3/20/2022数理金融 张元萍 编著43第一节 函数和微分在数理金融中的应用 四、数理金融中微分方程和差分方程的应用 1、 运用微分方程决定动态平衡点 微分方程可用于决定市场均衡模型的动态平衡点,它描述出宏观经济的不同条件下,价格增长的时间路径,也可以
17、估计资本函数,并根据边际成本和边际收入函数估计总收益函数。3/20/2022数理金融 张元萍 编著44第一节 函数和微分在数理金融中的应用 2、 运用可分离变量微分方程求投资函数 投资的变化率将影响经济的总需求和生产能力,运用微分方程寻找经济增长的时间路径,并沿该路径增长。3/20/2022数理金融 张元萍 编著45第一节 函数和微分在数理金融中的应用 3、 运用差分方程制定滞后收入决定模型 差分方程表示的是因变量和滞后的自变量之间的关系,这些变量在离散的时间区间内变化。3/20/2022数理金融 张元萍 编著46第二节 线性代数在数理金融中的应用3/20/2022数理金融 张元萍 编著47第
18、二节 线性代数在数理金融中的应用3/20/2022数理金融 张元萍 编著48第二节 线性代数在数理金融中的应用 2、证券组合收益率和风险的测度 在证券组合分析中,由于证券种类繁多,需要运用矩阵方法测度多种证券组合的收益率和风险。3/20/2022数理金融 张元萍 编著49第二节线性代数在数理金融中的应用 二、特殊行列式和矩阵在数理金融中的应用 在数理金融中要应用一些特殊行列式和矩阵,如雅可比行列式、海赛行列式、判别式等。3/20/2022数理金融 张元萍 编著50第二节线性代数在数理金融中的应用3/20/2022数理金融 张元萍 编著51第二节线性代数在数理金融中的应用3/20/2022数理金
19、融 张元萍 编著52第二节线性代数在数理金融中的应用 3、最优化问题中的海赛行列式3/20/2022数理金融 张元萍 编著53第三节 随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著54第三节 随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著55第三节 随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著56第三节 随机过程在数理金融中的应用 (二)、有限维分布族的两个性质 (1)、对称性 (2)、相容性3/20/2022数理金融 张元萍 编著57第三节 随机过程在数理金融中的应用 三、随机过程的基本类型 (一)、平稳过程 涵义:这类过程处于某
20、种平稳状态,其主要性质与变量之间的时间间隔有关,与所考察的起点无关。这样的过程称为平稳过程3/20/2022数理金融 张元萍 编著58第三节随机过程在数理金融中的应用 1、 几种常用的平稳过程 (1)、平稳的噪声序列 (2)、滑动平均序列 (3)、两个特殊平稳过程3/20/2022数理金融 张元萍 编著59第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著60第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著61第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著62第三节随机过程在数理金融中的应用3/20/2022数理金融 张元
21、萍 编著63第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著64第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著65第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著66第三节随机过程在数理金融中的应用3/20/2022数理金融 张元萍 编著67第三章计量经济学在数理金融中的应用 第一节 简单一元计量线性回归模型 第二节 多元线性回归与最小二乘估计 第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著68第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著69第一节 简单一元计量线性
22、回归模型3/20/2022数理金融 张元萍 编著70第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著71第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著72第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著73第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著74第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著75第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著76第一节 简单一元计量线性回归模型3/20/2022数理金融 张元萍 编著77第二节 多元线性
23、回归与最小二乘估计3/20/2022数理金融 张元萍 编著78第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著79第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著80第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著81第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著82第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著83第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著84第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍
24、编著85第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著86第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著87第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著88第二节 多元线性回归与最小二乘估计3/20/2022数理金融 张元萍 编著89第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著90第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著91第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著92第三节 协整方法在数理金融中的应用3/20/2
25、022数理金融 张元萍 编著93第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著94第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著95第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著96第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著97第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著98第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著99第三节 协整方法在数理金融中的应用3/20/2022数理金融 张元萍 编著100第三节 协整方法在数
26、理金融中的应用3/20/2022数理金融 张元萍 编著101第三节 协整方法在数理金融中的应用ttttttttreLRLMZLyLmrLcmr16543211inf)()()()()(3/20/2022数理金融 张元萍 编著102第四章 资产组合理论与资本资产定价模型 第一节 不确定情况下的选择理论 第二节 证券投资组合及有效集 第三节 资本资产定价模型 第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著103第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著104第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著105第一节不确定情况下
27、的选择理论3/20/2022数理金融 张元萍 编著106第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著107第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著108第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著109第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著110第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著111第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著112第一节不确定情况下的选择理论3/20/2022数理金融 张元萍 编著113第二节 证券投资组合及有效
28、集3/20/2022数理金融 张元萍 编著114第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著115第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著116第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著117第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著118第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著119第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著120第二节 证券投资组合及有效集3/20/2022数理金融 张元萍 编著121第三节 资本资产定价模型3/20/
29、2022数理金融 张元萍 编著122第三节 资本资产定价模型3/20/2022数理金融 张元萍 编著123第三节 资本资产定价模型3/20/2022数理金融 张元萍 编著124第三节 资本资产定价模型3/20/2022数理金融 张元萍 编著125第三节 资本资产定价模型3/20/2022数理金融 张元萍 编著126第四节 套利定价模型(APT) 一、套利的基本形式 1、空间套利 空间套利(或称地理套利),是指一个市场上低价买进某种商品,而在另一市场上高价卖出同种商品,从而赚取两个市场间差价的交易行为。空间套利是最简单的套利形式之一。3/20/2022数理金融 张元萍 编著127第四节 套利定价
30、模型(APT) 2、时间套利 时间套利是指同时买卖在不同时点交割的同种资产,包括现在对未来的套利和未来对未来的套利。3/20/2022数理金融 张元萍 编著128第四节 套利定价模型(APT) 3、工具套利 工具套利就是利用同一标的资产的现货及各种衍生证券的价格差异,通过低买高卖来赚取无风险利润的行为。3/20/2022数理金融 张元萍 编著129第四节 套利定价模型(APT) 4、风险套利 风险套利是指利用风险定价上的差异,通过卖底卖高赚取无风险利润的交易行为。根据高风险高收益原则,风险越高,所要求的风险补偿就越多,保险是风险套利的典型事例。3/20/2022数理金融 张元萍 编著130第四
31、节 套利定价模型(APT) 5、税收套利 税收套利是指不同投资主体、不同证券、不同收入来源在税收待遇上存在的差异所进行的套利交易。3/20/2022数理金融 张元萍 编著131第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著132第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著133第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著134第四节 套利定价模型(APT) 121111,0,00,00,n0,nnnnnnnnnininnniiinnnnnnnijijnijnnWWWWWWW rr n WW WWWVar r 当其中3/
32、20/2022数理金融 张元萍 编著135第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著136第四节 套利定价模型(APT)3/20/2022数理金融 张元萍 编著137第四节 套利定价模型(APT) 五、APT与CAPM的区别 1、APT对分布不做要求,CAPM必须是正态分布假定; 2、APT对个人收益没有直接假定条件,而CAPM是一种特殊组合,假定在收益一定情况下,选择风险小,在风险一定条件下,选择收益大;3/20/2022数理金融 张元萍 编著138第四节 套利定价模型(APT) 3、APT中证券组合无特殊地位; 4、APT允许非证券市场因素参与定价,CAPM只与
33、证券市场本身因素有关;3/20/2022数理金融 张元萍 编著139第四节 套利定价模型(APT) 5、APT可以对证券市场的某一部分的组合定价,无需涉及全体,CAPM必须从证券市场整体考虑。 6、APT可以进行多阶段组合。3/20/2022数理金融 张元萍 编著140第五章 布莱克方程与期权定价模型 第一节 期权价格的构成 第二节 布朗运动 第三节 伊托过程和伊托引理 第四节 布莱克斯科尔斯微分方程 第五节二叉树期权定价模型 第六节金融期权价格的敏感性指标3/20/2022数理金融 张元萍 编著141第一节 期权价格的构成3/20/2022数理金融 张元萍 编著142第一节 期权价格的构成3
34、/20/2022数理金融 张元萍 编著143第一节 期权价格的构成3/20/2022数理金融 张元萍 编著144第一节 期权价格的构成3/20/2022数理金融 张元萍 编著145第一节 期权价格的构成 二、权利金、内在价值、时间价值三者之间的关系权利金(P) 3/20/2022数理金融 张元萍 编著146第一节 期权价格的构成3/20/2022数理金融 张元萍 编著147第一节 期权价格的构成3/20/2022数理金融 张元萍 编著148第一节 期权价格的构成3/20/2022数理金融 张元萍 编著149第一节 期权价格的构成3/20/2022数理金融 张元萍 编著150第一节 期权价格的构
35、成3/20/2022数理金融 张元萍 编著151第一节 期权价格的构成3/20/2022数理金融 张元萍 编著152第一节 期权价格的构成3/20/2022数理金融 张元萍 编著153第一节 期权价格的构成3/20/2022数理金融 张元萍 编著154第一节 期权价格的构成3/20/2022数理金融 张元萍 编著155第一节 期权价格的构成3/20/2022数理金融 张元萍 编著156第一节 期权价格的构成3/20/2022数理金融 张元萍 编著157第一节 期权价格的构成3/20/2022数理金融 张元萍 编著158第二节 布朗运动3/20/2022数理金融 张元萍 编著159第二节 布朗运
36、动3/20/2022数理金融 张元萍 编著160第二节 布朗运动3/20/2022数理金融 张元萍 编著161第二节 布朗运动3/20/2022数理金融 张元萍 编著162第二节 布朗运动3/20/2022数理金融 张元萍 编著163第三节 伊托过程和伊托引理3/20/2022数理金融 张元萍 编著164第三节 伊托过程和伊托引理bdzxGdtbxGtGaxGdG)21(2223/20/2022数理金融 张元萍 编著165第四节 布莱克斯科尔斯微分方程 推导布莱克斯科尔斯微分方程需要用到如下假设: 1证券价格遵循几何布朗过程,即和为常数; 2允许卖空标的证券; 3没有交易费用和税收,所有证券都
37、是完全可分的;3/20/2022数理金融 张元萍 编著166第四节 布莱克斯科尔斯微分方程 4在衍生证券有效期内标的证券没有现金收益支付; 5不存在无风险套利机会; 6证券交易是连续的,价格变动也是连续的; 7在衍生证券有效期内,无风险利率r为常数。3/20/2022数理金融 张元萍 编著167第四节 布莱克斯科尔斯微分方程3/20/2022数理金融 张元萍 编著168第四节 布莱克斯科尔斯微分方程3/20/2022数理金融 张元萍 编著169第四节 布莱克斯科尔斯微分方程3/20/2022数理金融 张元萍 编著170第四节 布莱克斯科尔斯微分方程 (二)有收益资产美式期权的定价 1美式看涨期
38、权 当标的资产有收益时,美式看涨期权就有提前执行的可能,因此有收益资产美式期权的定价较为复杂,布莱克提出了一种近似处理方法。3/20/2022数理金融 张元萍 编著171第四节 布莱克斯科尔斯微分方程 该方法是先确定提前执行美式看涨期权是否合理,其方法我们在本章第一节已论述过。若不合理,则按欧式期权处理;若在tn提前执行有可能是合理的,则要分别计算在T时刻和tn时刻到期的欧式看涨期权的价格,然后将二者之中的较大者作为美式期权的价格。3/20/2022数理金融 张元萍 编著172第四节 布莱克斯科尔斯微分方程 2美式看跌期权 由于收益虽然使美式看跌期权提前执行的可能性减小,但仍不排除提前执行的可
39、能性,因此有收益美式看跌期权的价值仍不同于欧式看跌期权,它也只能通过较复杂的数值方法来求出。3/20/2022数理金融 张元萍 编著173第五节二叉树期权定价模型 一、无收益资产期权的定价 为了对期权进行定价,二叉树模型也应用风险中性定价原理,并假定: (1)所有可交易证券的期望收益都是无风险利率; (2)未来现金流可以用其期望值按无风险利率贴现来计算现值。3/20/2022数理金融 张元萍 编著174第五节二叉树期权定价模型3/20/2022数理金融 张元萍 编著175第五节二叉树期权定价模型3/20/2022数理金融 张元萍 编著176第五节二叉树期权定价模型3/20/2022数理金融 张
40、元萍 编著177第五节二叉树期权定价模型3/20/2022数理金融 张元萍 编著178第五节二叉树期权定价模型3/20/2022数理金融 张元萍 编著179第五节二叉树期权定价模型3/20/2022数理金融 张元萍 编著180第六节金融期权价格的敏感性指标一、 Delta()1、定义 Delta(通常以“”表示)表示期权的标的物价格的变动对期权价格的影响程度。3/20/2022数理金融 张元萍 编著181第六节金融期权价格的敏感性指标 2、数值变化范围 看涨期权的Delta在0与1之间,而看跌期权的Delta在-1和0之间。Delta大于零,说明期权价格与标的物价格成同方向变化;Delta小于
41、零,说明期权价格与标的物价格成反方向变化;Delta大于-1或小于1,说明期权价格的变动额必小于标的物价格的变动额。3/20/2022数理金融 张元萍 编著182第六节金融期权价格的敏感性指标3、Delta的对冲 Delta的实际用途是用于将期权仓盘转化为等价期货仓盘的计算数据。3/20/2022数理金融 张元萍 编著183第六节金融期权价格的敏感性指标4、中性期权对冲 delta=看涨期权的持有者或看跌期权的卖出者,建立中性期权所必需的卖出或买入,或自己持有的标的物合约数量的比例。 3/20/2022数理金融 张元萍 编著184第六节金融期权价格的敏感性指标3/20/2022数理金融 张元萍
42、 编著185第六节金融期权价格的敏感性指标 三、lambda() lambda()是反映标的物价格的波动性对期权价格影响程度的指标。 四、theta() theta()是用来衡量权利期间对期权价格之影响程度的敏感性指标。 五、Rho() Rho()是用来反映利率对期权价格的影响程度的敏感性指标。3/20/2022数理金融 张元萍 编著186第六章 金融风险分析与测度 第一节 金融风险的测度方法VAR 第二节 利率风险的测度 第三节 金融资产回报的波动性与相关性 第四节 历史模拟及蒙特卡洛法 第五节 信用风险的测度 第六节 整体风险管理3/20/2022数理金融 张元萍 编著187第一节 金融风
43、险的测度方法VAR 一、金融风险的涵义及分类 1、市场风险 2、信用风险 3、流动性风险 4、操作风险 5、法律风险3/20/2022数理金融 张元萍 编著188第一节 金融风险的测度方法VAR 二、金融风险的测度方法 (一) VaR计算的基本思想 1、 VaR的含义 VaR是指在正常的市场条件和给定的置信度(通常是95%或99%)下,在给定的持有期间内,某一投资组合预期可能发生的最大损失,或者说,在正常的市场条件下和给定的时间段内,该投资组合发生的VaR值损失的概率仅为给定的概率水平。3/20/2022数理金融 张元萍 编著189第一节 金融风险的测度方法VAR 2 、VaR计算的基本模块
44、这一过程由三个基本模块构成:第一个是映射过程把组合中每一种头寸的回报表示为其市场因子的函数;第二个是市场因子的波动性模型预测市场因子的波动性;第三个是估值模型根据市场因子的波动性估计组合的价值变化和分布。3/20/2022数理金融 张元萍 编著190第一节 金融风险的测度方法VAR 3、 市场因子的波动性模型 (1)历史模拟法。 (2)蒙特卡洛模拟法。 (3)情景分析。 (4)风险矩阵方法(Risk Metrics)。 (5)GARCH模型。 (6)隐含波动性模型。 (7)随机波动模型。3/20/2022数理金融 张元萍 编著191第一节 金融风险的测度方法VAR 4、 证券组合的估值模型 根
45、据市场因子的波动性估计证券组合价值变化和分布的方法主要有两类,即分析方法(局部估值模型)和模拟方法(全值模型)。3/20/2022数理金融 张元萍 编著192第一节 金融风险的测度方法VAR (二)VaR的分布 1、 一般分布中的VaR 可定义相对于证券组合的价值均值(期望回报)的VaR,即相对VaR为: *RVaRE PPP R 3/20/2022数理金融 张元萍 编著193第一节 金融风险的测度方法VAR 如果不以期望回报为基准,可以定义绝对VaR为:*A00VaRPPP R 3/20/2022数理金融 张元萍 编著194第一节 金融风险的测度方法VAR 2、 正态分布中的VaR 假定分布
46、是正态分布形式,则可以简化VaR的计算。在正态分布条件下,可以根据置信水平选择一个对应的乘子,用组合的标准差与该乘子相乘,可求得VaR。这种方法是基于对参数标准差得估计,称为参数方法。3/20/2022数理金融 张元萍 编著195第一节 金融风险的测度方法VAR (三)利用Dalta正态模型计算VaR 利用Dalta正态模型计算VaR包括以下主要步骤 (1) 风险映射 (2) 市场因子的方差协方差矩阵估计 (3) 估计标准头寸的Dalta; (4) 估计标准头寸的方差协方差矩阵 (5) 组合价值变化与VaR估计3/20/2022数理金融 张元萍 编著196第一节 金融风险的测度方法VAR (四
47、)固定证券的VaR计算 1、现金流映射的概念 在VaR模型中,资产组合在每一天的变动率是无法提供的,风险矩阵提供固定时点的变动率,当计算单一资产或资产组合现金流时,应将其映射到这些固定时点上,以便计算其风险。3/20/2022数理金融 张元萍 编著197第一节 金融风险的测度方法VAR 对现金流的映射分解应采取三原则: (1)现值不变,两端点现金流市值之和与初始现金流现价相等; (2)风险不变,端点现金流组合的市场风险必须与初始现金流的市场风险相同; (3)现金流符号不变,分解后现金流的符号必须与初始的相同。3/20/2022数理金融 张元萍 编著198第一节 金融风险的测度方法VAR3/20
48、/2022数理金融 张元萍 编著199第一节 金融风险的测度方法VAR3/20/2022数理金融 张元萍 编著200第二节 利率风险的测度 一、 债券价格与利率 若债券息票支付为每年1次,以复利计算的普通债券未来现金流量(息票收益和本金偿付的总和)的现值或债券价格可用公式表示为:111TttTtCFPii3/20/2022数理金融 张元萍 编著201第二节 利率风险的测度 二、 债券期限与息票数额对债券价格与利率关系的影响 债券到期期限对债券价格与利率的关系有显著影响。在其他因素不变的条件下,长期债券价格对市场利率变化的弹性大于短期债券价格利率弹性。3/20/2022数理金融 张元萍 编著20
49、2第二节 利率风险的测度 三、 久期(duration) 债券的久期可以定义为债券价格相对于市场利率变动百分比的弹性。 其中,D=债券的久期,P=债券价格,市场利率,C=息票支付额,F=债券面值,n=债券到期期限。1111nttttCnFP PiiDiiP 3/20/2022数理金融 张元萍 编著203第二节 利率风险的测度3/20/2022数理金融 张元萍 编著204第二节 利率风险的测度 五、 凸性 1、凸性的概念 久期可以看作是债券价格对利率小幅波动敏感性的一阶估计,而凸性则是对债券价格利率敏感性的二阶估计,或是对债券久期利率敏感性的测量。凸性可以通过计算久期对利率的导数或债券价格对利率
50、的二阶导数再除以债券的价格得到: 3/20/2022数理金融 张元萍 编著205第二节 利率风险的测度3/20/2022数理金融 张元萍 编著206第三节 金融资产回报的波动性与相关性 一、波动性与相关性的含义和度量 价格的波动性是指未来价格偏离其期望值的可能性。对期望价格的偏离有两种情况:一种是有利的偏离,即价格上涨;另一种是不利的偏离,即价格下降。波动性越大,价格上升或下降的机会就越大。3/20/2022数理金融 张元萍 编著207第三节 金融资产回报的波动性与相关性 统计学种常用方差和标准差来描述波动性。在金融中,波动形式是用回报的标准差来度量。如果波动形式基于日回报、周回报或月回报数据