1、数学史概论天狼 数学史选讲解读 第一讲第一讲 早期的算术与几何早期的算术与几何 第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝中国古代数学瑰宝 第四讲第四讲 平面解析几何的产生平面解析几何的产生 第五讲第五讲 微积分的诞生微积分的诞生 第六讲第六讲 近代数学两巨星近代数学两巨星 第七讲第七讲 千古谜题千古谜题 第八讲第八讲 若干未决猜想的进展若干未决猜想的进展第一讲第一讲 早期早期的算术与几何的算术与几何 埃及和巴比伦的数学埃及和巴比伦的数学中国的早期数学中国的早期数学纸草书 纸草书是研究古埃及数学的主要来源 莱因德纸草书:最初发现于埃及底比斯古都废墟,1858年为苏格兰收
2、藏家莱因德购得,现藏于伦敦大英博物馆又称阿姆士纸草书,阿姆士在公元前1650年左右用僧侣文抄录了这部纸草书,据他加的前言知,所抄录的是一部已经流传了两个世纪的著作含84个数学问题 莫斯科纸草书:又称戈列尼雪夫纸草书,1893年由俄国贵族戈列尼雪夫在埃及购得,现存于莫斯科博物馆产生于公元前1850年前后,含有25个数学问题 古埃及的计算技术具有迭加的特征,乘除法运算,往往用连续加倍来完成由于方法较为繁复,古埃及算术难以发展到更高的水平 相对于算术,古埃及的几何具有更高的成就古代埃及人留下了许多气势宏伟的建筑,可以说明古埃及几何学的发达 埃及几何 埃及几何产生于土地测量,是一种实用几何 对面积、体
3、积的计算,他们给出了一些计算的法则,有准确的也有粗略的在莫斯科纸草书中有一个正四棱台体积的计算所用的公式,用现在的符号表示是 这是埃及几何中最出色的成就之一 22()3hVaabb巴比伦的数学 六十进制位值制记数法。 长于计算,编制了许多数表:乘法表、倒数表、平方表、立方表、平方根表、立方根表、甚至有特殊的指数(对数)表。 能解二次方程。中国的早期数学中国的早期数学 中国古代数学的起源可以上溯到公元前数千年史记中记载,夏禹治水,“左规矩,右准绳”这可以看作是中国古代几何学的起源在殷商甲骨文中已经使用了完整的十进制记数法,春秋战国时代又出现了十进位值制筹算记数法而战国时代的考工记、墨经、庄子等著
4、作中则探讨了许多抽象的数学概念,并记载了大量实用几何知识周易中的数学 周易是中国古代专讲卜筮的书,也可以看作是古人探索自然的朴素的哲学著作,约成书于殷商时期。周易由易经和易传两部分组成,先有易经,后有易传,两部分成书的时间相距七八百年。易经包括古代占卜的卦辞及爻辞,易传由系辞、说卦等十篇文章组成,是对易经中卦辞及爻辞的解释。 卜筮是原始人类共有的社会现象。中国古代常用龟甲和兽骨作为占卜工具,以决定事情的吉凶。筮,是按一定的规则得到特定的数字,并用它来预测事情的吉凶。周礼称:“凡国之大事,先筮后卜。”史记龟策列传则说:“王者决定诸疑,参与卜筮,断以蓍龟,不易之道也。” 筮的工具起初是竹棍(以后出
5、现的筹算数码则形成了中国古代用竹棍表示数字的传统),后来改用蓍草-一种有锯齿的草本植物。 在中国古代众多的儒、道典籍中,周易是包含数学内容最丰富的著作,因而对中国古代数学家产生了极大的影响。比如,刘徽在九章算术注的序中就写道:“昔伏羲氏始作八卦,以通神明之德,以类万物之情。作九九之数,以合六爻之变。”实际上就把数学方法与周易中的六爻、八卦等内容联系起来了。 八卦 乾 巽 离 - - 艮 - - - - - - - - - - - - - - 坤 - - 震 - - 坎 兑 - - - - 乾乾(000)坤坤(111)震震(011)艮艮(110)离离(010)坎坎(101)兑兑(001)巽巽(1
6、00) 计算机的发明与周易中的八卦有着十分密切的联系。众所周知,现代电子计算机最基本的数学基础是二进制数。二进制符号是德国数学家莱布尼茨(Leibniz,16461716)发明的。莱布尼茨于1679年撰写了二进制算术,阐述了二进制理论。莱布尼茨自称,他之所以会想到二进制数,就是因为受到了八卦符号的启发。他还说:“可以让我加入中国籍了吧”。 太极图 周易中的另一重要概念是太极。周易中写道:“易有太极,是生两仪,两仪生四象,四象生八卦。”太极即太一,这段话讲的是八卦产生的原理,也试图解释天地造分,化成万物的原理。后经宋代陈抟的发展,便有了太极图。 周易中另一个与数学相关的内容是“河图洛书”。周易中
7、有“河出图,洛出书,圣人则之”的记载。相传,上古伏羲氏时,洛阳东北孟津县境内的黄河中浮出龙马,背负河图,献给伏羲。伏羲依此而演成八卦,后为周易来源。又相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮洛书,献给大禹。大禹依此治水成功,遂划天下为九州。又依此定九章大法,治理社会,流传下来收入尚书中,名洪范。也就是说,在古人看来,八卦与九数实出于河图洛书河图洛书。 宋代陈抟所作的“洛书图”(九宫图)492357816 数的概念的产生数的概念的产生 数和形是数学最早的研究对象,考古研究发现,人类在5万年前就已经有了一些计数的方法。现代人的研究认为,人类数的概念的发展过程是,先有原始的数感,再形成一一对应
8、的计数方法,最后通过集合的等价关系建立抽象的数的概念。 记数符号的产生记数符号的产生 易系辞中载:“上古结绳而治,后世圣人易之以书契”。结绳记数,是指在绳子上打一个结表示一个数或一件事,绳结的多少,根据事物多少而定。而所谓的“书契”,就是刻划,“书”是划痕,“契”是刻痕。古人常常在各种动物骨头、金属、泥版上刻痕记数。如中国殷商时期常将文字刻划在牛的肩胛骨或龟甲上,故称甲骨文。 从刻划记数,人类很自然地过渡到刻出数的符号,并进而创造出第一批数字。古代中国、古埃及、巴比伦等民族,均在公元前5000年前后就有了记数符号。由于古人用手指作为计数的参照物十分方便,因而许多民族都不约而同地使用了十进制计数
9、法。当然也存在着少量的其它进位制,如5进制、12进制、16进制、20进制、60进制等。 公元前500年左右的战国时代,中国人创造了具有十进位值制特征的筹算数码。 筹算数字的摆放方法规定,个位用纵式,十位用横式,百位用纵式,千位用横式,万位又用纵式,如此纵横相间,以免发生误会。并规定用空位表示零。 到了13世纪,中国数学家又明确地用“ ”表示零,从而使中国记数法完全位值化。 拉普拉斯对十进位值制的评价 这是一个深远而又重要的思想,它今天看来如此简单,以致我们忽视了它的真正伟绩。但恰恰是它的简单性以及对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位;而当我们想到它竟逃过了古代
10、最伟大的两位人物阿基米德和阿波罗尼奥斯的天才思想的关注时,我们更感到这成就的伟大。第二讲第二讲 古希腊数学古希腊数学 希腊数学一般指从公元前600年至公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们所创造的数学。 希腊早期文明中心在雅典;公元前338年希腊诸帮被马其顿控制,文明中心转到亚历山大城(埃及);公元前30年左右,罗马帝国完全控制希腊各国,文明中心转到罗马(意大利)。公元640年前后,阿拉伯民族征服东罗马,希腊文明落下帷幕。古希腊数学与哲学的交织 古希腊早期的自然科学往往是与哲学交织在一起的,古希腊的自然哲学乃是古代自然科学的一
11、种特殊形态,虽然有许多错误的东西,但也有不少合理的知识和包含着合理成分的猜测恩格斯说:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚胎、萌芽因此,如果理论自然科学想要追溯自己今天的一般原理发生和发展的历史,它就不得不回到希腊人那里去” 古希腊数学表现出很强的理性精神,追求哲学意义上的真理在公元前3、4百年的时候,他们的数学思想中就已经涉及到了无限性、连续性等深刻的概念 经过古埃及和巴比伦人长期积累数学知识的萌芽时期以后,古希腊人把数学推进到了一个崭新的时代古希腊数学不仅有十分辉煌的研究成果,而且提出了数学的基本观点,建立数学理论的方法,给以后的数学发展提供了坚实的基础 泰勒斯确
12、定了几条最早的几何定理 等腰三角形两底角相等 如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等 直角彼此相等 两条直线相交时,对顶角相等 圆的直径平分圆周 万物皆数 毕达哥拉斯学派认为世界万物都是数,最重要的数是1、2、3、4,而10则是理想的数;相应地,自然界由点(一元)、线(二元)、面(三元)和立体(四元)组成。他们认为自然界中的一切都服从于一定的比例数,天体的运动受数学关系的支配,形成天体的和谐。 理论算术(数论的雏形) 完全数、过剩数(盈数)、不足数(亏数)分别表现为其因数之和等于、大于、小于该数本身(规定因数包括1但不包括该数自身)。他们发现的前几个完全数是6=1+
13、2+3,28=1+2+4+7+14,496。 而220和284则是一对亲和数,因为前者的因数和等于284,后者的因数和等于220。 后来,在数学中寻找完全数就成为一项任务来研究.在前八千多正整数中只有4个完全数,6、28、496、8128,第五个完全数在1538年才找到:33550336,50年后发现第六个完全数:8589869056. .2005年发现第42个梅审素数,从而有了第42个完全数。几何成就 使几何学从经验上升到理论的关键性贡献应归功于毕达哥拉斯学派。他们基本上建立了所有的直线形理论,包括三角形全等定理、平行线理论、三角形的内角和定理、相似理论等。 正多边形和正多面体 毕达哥拉斯学
14、派掌握了正多边形和正多面体的一些性质。他们发现,同名正多边形覆盖平面的情况只有三种:正三角形、正方形、正六边形,而且这些正多边形个数之比为6:4:3,边数之比则为3:4:6。 毕达哥拉斯学派的另一项几何成就是正多面体作图,他们称正多面体为“宇宙形”。三维空间中仅有五种正多面体:正四面体、正六面体、正八面体、正十二面体、正二十面体。 正五边形与五角星 在五种正多面体中,除正十二面体外,每个正多面体的界面都是三角形或正方形,而正十二面体的界面则是正五边形。 正五边形作图与著名的“黄金分割”有关。五条对角线中每一条均以特殊的方式被对角线的交点分割。据说毕达哥拉斯学派就是以五角星作为自己学派的标志的。
15、 勾股数 毕达哥拉斯数: 一般形式之一:2221,22 ,221nnnnn222(, , ,xyzx y z两两互素)22222 ,( , ) 1, ,xab y ab z ab a b o abab 一 奇 一 偶勾股数 毕达哥拉斯数: 一般形式之一:2221,22 ,221nnnnn222(, , ,xyzx y z两两互素)22222 ,( , ) 1, ,xab y ab z ab a b o abab 一 奇 一 偶无理数的发现 毕达哥拉斯学派的信条是“万物皆数”,这里的数实际上是指正的有理数。传说,毕达哥拉斯学派成员希帕苏斯(Hippasus,公元前470年左右)发现了“不可公度比
16、”的现象,并在一次航海时公布了他的想法,结果被恐慌的毕达哥拉斯学派的其他成员抛进了大海。 项武义教授的一项研究认为,希帕苏斯首先发现的是正五边形边长与对角线长不可公度。第一次数学危机 不可公度比的发现使毕达哥拉斯学派对许多定理的证明都不能成立。 例:如果两个三角形的高相同,则它们的面积之比等于两底边之比。 ABCDE新比例论 100多年后,欧多克斯(Eudoxus,408-355)提出了“新比例论”,才用回避的方法暂时消除了“第一次危机”。 新比例定义:设A、B、C、D是任意四个量,其中A和B同类(即均为线段、角或面积),C和D同类,若对任意两个(正)整数m和n,mA与nB的大小关系,取决于m
17、C与nD的大小,则称A:B=C:D。 柏拉图学园 柏拉图(Plato,公元前427-347年)是当时最著名的希腊哲学家之一,虽然他不是数学家,但热心于数学科学,在柏拉图学园的门口挂着牌子:“不懂几何者免进”。值得注意的是,公元前四世纪的重要数学工作几乎都是柏拉图的朋友和学生做的。与柏拉图学园有联系的欧多克斯(Eudoxus,公元前408-355年)是这一时期最大的数学家,他在几何学上的研究成果,后来有些收入了欧几里得的几何原本。 亚里士多德 亚里士多德(Aristotle,公元前384-322年)是柏拉图的学生和同事,相处达20年之久,公元前335年成立了自己的学派,以后曾是马其顿王亚列山大的
18、老师。他是古典希腊时期最伟大的思想家,他的一些思想在数学史上影响很大。形式逻辑的建立 亚里士多德不象柏拉图那样只崇尚思辨,而是重视观察、分析和实验性的活动(如解剖)。亚里士多德是古希腊学者中最博学的人,是古代百科全书式的自然科学家,也是对近代自然科学影响最大的古代学者。他的著作甚多,在自然科学方面主要有物理学、论产生和消灭、天论、气象学、动物的历史、论动物的结构等。 形式逻辑的建立 亚里士多德创立了以三段论为中心的形式逻辑系统。他认为科学需要归纳,由特殊的事例过渡到一般命题,更需要用逻辑的推理由前提演绎出它的推论。亚里士多德的逻辑学著作后来被汇编为工具论,对阿基米德、欧几里得等人的研究有重要影
19、响。 古典希腊时期的希腊人已经掌握了大量初等几何性质,加上亚里士多德建立了形式逻辑,这些都为形成一门独立的初等几何的理论科学作好了充分的准备。亚历山大时期的数学 从公元前330年左右到公元前30年左右,希腊数学的中心从雅典转移到了埃及的亚历山大城。亚历山大帝国一分为三后,托勒密帝国统治希腊埃及,其首都亚历山大城成为希腊文化的中心。 托勒密一世曾经是亚里士多德的学生,他在执政后修建了缪斯艺术宫,这实际上是一个大博物馆,收藏的图书和手稿据说有5070万卷。当时的许多著名学者都被请到亚历山大里亚,用国家经费供养着。 这一时期思辩猜测已不盛行,观察、计算及定量分析的方法开始流行。天文学家阿利斯塔克(公
20、元前310230),通过对日、月、地的体积和相对距离的观测和计算作出了日心说的猜测。他通过测量角度推算出太阳直径比地球大六、七倍,并断定小天体(地球等)应围绕大天体(太阳)旋转。尽管他的计算很不精确,但思维方式是重要的。著名天文地理学家、数学家埃拉托色尼(约公元前284192)根据太阳在两个地方投影角之差,计算出地球的周长是24662英里(现在算出的通过地球南北极的周长为24819英里),他绘制了世界地图,并标明了经纬线以及寒带、热带和温带。 欧几里得与几何原本 欧几里得(约公元前330260),应托勒密一世之邀到亚历山大,成为亚历山大学派的奠基人。欧几里得系统地整理了以往的几何学成就,写出了
21、13卷原本,欧几里得的工作不仅为几何学的研究和教学提供了蓝本,而且对整个自然科学的发展有深远的影响。爱因斯坦说:“西方科学的发展是以两个伟大的成就为基础的,那就是:希腊哲学家发明形式逻辑体系(在欧几里得几何学中),以及通过系统的实验发现有可能找到因果关系(在文艺复兴时期)。” 公理化方法 公理化方法:从一些基本的概念和公理出发,利用纯逻辑推理的方法,把一门学科建立成演绎系统的方法。后来的许多著作都仿照这种格式写成,如牛顿的自然哲学的数学原理等。几何原本的影响 几何原本对后来数学思想有重要影响。其一:公理化思想;其二:几何直观与严格逻辑推理的结合使欧几里得几何长期被认为是最正宗的数学知识,笛卡儿
22、在发明了解析几何后仍坚持对每一个几何作图给出综合证明,牛顿在第一次公开他的微积分发明时也要对这一算法作出几何解释;其三:导致非欧几何的诞生。 阿基米德的数学成就 阿基米德(Archimedes,公元前287-212)出生于西西里岛的叙拉古,曾在亚历山大跟欧几里得的学生学习过,离开亚历山大后仍与那里的师友保持联系,他的许多成果都是通过与亚历山大学者的通信而保存下来的。因此,阿基米德通常被看成是亚历山大学派的成员。 阿基米德的著作很多,内容涉及数学、力学及天文学等。 “穷竭法”与“平衡法” 穷竭法是安蒂丰首先使用,并被古希腊数学家普遍用来证明面积和体积的方法。穷竭法可以用来严格证明已经猜想出来的命
23、题,但不能用来发现新的结果。 阿基米德发明了求面积和体积的“平衡法”,求出面积或体积后再用“穷竭法”加以证明。阿基米德“平衡法”与“穷竭法”的结合是严格证明与创造技巧相结合的典范。 球的体积 阿基米德用“平衡法”推导了球体积公式。刻在阿基米德墓碑上的几何图形代表了他所证明的一条数学定理:以球的直径为底和高的圆柱,其体积是球体积的3/2,其表面积是球面积的3/2。 阿基米德的“平衡法”,将需要求积的量分成一些微小单元,再与另一组微小单元进行比较,而后一组的总和比较容易计算。因此,“平衡法”实际上体现了近代积分法的基本思想,是阿基米德数学研究的最大功绩。但是,“平衡法”本身必须以极限论为基础,阿基
24、米德意识到了他的方法在严密性上的不足,所以他用平衡法求出一个面积或体积后,必再用穷竭法加以严格的证明。 用平衡法求球的体积 球切片体积 锥切片体积 柱切片体积 左力矩= 右力矩= 左力矩=4右力矩P球锥的切片x(2)xRxx2xx2RxN24 R xx2R xx用平衡法求球的体积 将球、圆锥、圆柱均完全分割成厚度为x的薄片,并将所有球与圆锥的薄片都挂到P点,圆柱薄片都留在原处。 左力矩和=(球体积+锥体积)2R 右力矩和=柱体积R (球体积+锥体积)2R=4柱体积R 球体积=2柱体积锥体积 与欧几里得相比,阿基米德可以说是一位应用数学家。在论浮体中论述了浮力原理、在论平面图形的平衡或其重心中论
25、述了杠杆原理。曾设计了一组复杂的滑车装置,使叙拉古国王亲手移动了一只巨大的三桅货船,他说:“给我一个支点,我可以移动地球”。在保卫叙拉古的战斗中发明了许多军械如石炮、火镜等。后被罗马士兵杀害,死时75岁。传说曾下令不要杀死阿基米德的罗马主将马塞吕斯事后特意为阿基米德建墓。 阿波罗尼奥斯与圆锥曲线论 阿波罗尼奥斯(Apollonius,公元前262-190)出生于小亚细亚(今土尔其一带),年轻时曾在亚历山大城跟随欧几里得的学生学习,后到小亚细亚西岸的帕加蒙王国居住与工作,晚年又回到亚历山大。 阿波罗尼奥斯的主要数学成就是在前人工作的基础上创立了相当完美的圆锥曲线理论,编著圆锥曲线论。 圆锥曲线论
26、 全书共8卷,含487个命题。在阿波罗尼奥斯之前,希腊人用三种不同圆锥面导出圆锥曲线,阿波罗尼奥斯则第一次从一个对顶圆锥得到所有的圆锥曲线,并给它们以正式的名称:亏曲线、齐曲线、盈曲线(李善兰翻译时取意译名椭圆、抛物线、双曲线)。 圆锥曲线论可以说是希腊演绎几何的最高成就。几何学的新发展要到17世纪笛卡儿等人的解析方法出现后才得以来临。 阿波罗尼奥斯用统一的方式引出三种圆锥曲线后,便展开了对它们性质的广泛讨论,内容涉及圆锥曲线的直径、公轭直径、切线、中心、双曲线的渐进线、椭圆与双曲线的焦点以及处在不同位置上的圆锥曲线的交点数等。圆锥曲线论中包含了许多即使按今天的眼光看也是很深奥的问题。第5卷中
27、关于定点到圆锥曲线的最长和最短线段的探讨,实质上提出了圆锥曲线的法线包络即渐屈线的概念,它们是近代微分几何微分几何的课题。第3、4卷中关于圆锥曲线的极点与极线的调和性质的论述,则包含了射射影几何学影几何学的萌芽思想。 罗马时期的数学成就 海伦(Heron,前1世纪公元1世纪)推导出求三角形面积的海伦公式。 托勒密(Ptolemy约100170)的地球中心学说。托勒密利用大量的观察资料,进行浩繁的计算,写出八卷本的大综合论,详细论述了太阳系和宇宙以地球为中心的学说。在托勒密的地心说中,行星是绕着一种数学上的点(本轮中心)运动的,而这些点又位于均轮上围绕地球运转。托勒密的地心说虽然不反映宇宙的实际
28、结构,但是依据上述的数学图解却比较完满地解释了当时所观测到的行星运动情况。 托勒密将圆周分成360度,角的度量采用60进制,还应用托勒密定理(圆内接四边形中,两条对角线长的乘积等于两对对边长乘积之和)造出了一张正弦表。 梅涅劳斯(Menelaus,约公元1世纪)的球面学是球面三角学的开山之作。 该时期希腊数学的一个重要特征是突破了以几何学为中心的传统,使算术和代数成为独立的学科。丢番图(Diophantus)的算术用纯分析的途径处理数论与代数问题(包括不定方程),可以看作是希腊算术与代数的最高成就。 该时期希腊数学的一个重要特征是突破了以几何学为中心的传统,使算术和代数成为独立的学科。丢番图(
29、Diophantus)的算术用纯分析的途径处理数论与代数问题(包括不定方程),可以看作是希腊算术与代数的最高成就。 丢番图的墓志铭 关于丢番图的生平没有什么记载,大约公元250年前后活动于亚历山大城,他活了84岁则可以从他的墓志铭中算出:丢番图的童年占一生的1/6,此后过了一生的1/12开始长胡子,再过一生的1/7后结婚,婚后5年生了个孩子,孩子活到父亲一半的年龄,孩子死后4年父亲也去世了。 数学汇编 该时期的最后一位重要数学家是帕波斯(Pappus,约公元300-350),著作数学汇编是一部总结前人成果的典型著作,在数学史上有特殊的意义,有许多古代希腊数学的宝贵资料就是因为有数学汇编的记载才
30、得以保存下来。 从公元前后至公元14世纪,先后经历了3次发展高潮,即两汉时期、魏晋南北朝时期及宋元时期,其中宋元时期达到了中国古典数学的顶峰。第三讲第三讲 中世纪的中国数学中世纪的中国数学周髀算经 周髀算经是我国最早的数学著作,系统地记载了周秦以来适应天文需要而逐步积累的科技成果。该书的主要内容是周代传下来的有关测天量地的理论和方法。 周髀算经也是中国最古的算书,成书确切年代没有定论,一般认为在公元前2、3世纪。周髀算经中的勾股定理 周公问商高关于计算的问题,商高答曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。” 荣方与陈子的一段对话中,则包含
31、了勾股定理的一般形式。陈子曰:“若求邪至日者,以日下为勾,日高为股。勾、股各自乘,并而开方除之,得邪至日,” 赵爽注周髀算经 周髀算经主要以文字形式叙述了勾股算法。中国数学史上最早完成勾股定理证明的数学家,是公元3世纪三国时期的赵爽。九章算术九章算术 九章算术成书于公元前后,是我国最重要、影响最深远的一本数学著作。后世不少人,如刘徽、祖冲之、李淳风等人均对九章算术作过注。特别是刘徽的注,加进了不少自己的精辟见解,阐述了重要的数学理论。九章算术注是九章算术得以流芳百世的重要补充和媒介。 对九章算术的评对九章算术的评价价 日本数学家小苍金之助把九章算术说成是中国的几何原本。吴文俊教授也认为,九章算
32、术和刘徽的九章算术注,在数学的发展历史中具有崇高的地位,足可与希腊的几何原本东西辉映,各具特色。 1968年德国沃格尔(Vogel)把九章算术译成德文出版时加的评论认为:“在古代算术中,包含如此丰富的246个算题,现存的埃及和巴比伦算题与之相比,真望尘莫及。以希腊而论,所保存的古算题为我们所熟知者,也属于希腊化时代。” 第一章“方田”讲述有关平面图形(土地田亩)面积的计算方法,包括分数算法,38个问题。提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完整法则。后者比欧洲早1400多年。 一今有田广十五步,从十六步,问为田几何?答曰:一亩。 二又有田广十二步,从十四步
33、,问为田几何?答曰:一百六十八步。 方田术曰:广从步数相乘得积步,以亩法二百四十步除之,即亩数,百亩为一倾。 五今有十八分之十二,问约之得几何?答曰:三分之二。 六又有九十一分之四十九,问约之得几何?答曰:十三分之七。 约分术曰:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。 第二章“粟米”讲述有关粮食交换中的比例问题。书中的“今有术”给出比例式中已知三数求第四数的方法,欧洲迟至15世纪才出现。 第三章“衰分”讲述配分比例和等差、等比等问题。 第四章“少广”讲述由田亩面积求边长,由球体积求经长的算法,这是世界上最早的多位数开平方、开立方法则的记载。它奠定了中国
34、在高次方程数值解法方面长期领先世界的基础。 开方术 今有积五万五千二百二十五步,问为方几何?答曰:二百三十五步。 开方术曰:置积为实,借一算步之,超一等。议所得,以一乘所借一算为法,而以除,除已,倍法为定法。其复除,折法而下。复置借算步之如初,以复议一乘之。所得副之,以加定法,以除,以所得副从定法。复除折下如前。 第五章“商功”讲述各种土木工程中的体积计算。我国自远古以来,对筑城、挖沟、修渠等土建工程积累了丰富的经验,创造了许多有关土方体积计算和估算的方法,本章即为经验和方法的理论总结,诸如长方体、台体、圆柱体、锥体等体积的计算公式都与现在一致,只是圆周率取3,误差较大。 第六章“均输”讲述纳
35、税和运输方面的计算问题,实际上是比较复杂的比例计算问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”讲述算术中盈亏问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。盈不足术实际上是一种线性插值法。该方法通过丝绸之路传入阿拉伯国家,受到特别重视,被称为“契丹算法”。后来传入欧洲,13世纪意大利数学家斐波那契的算经一书中专门有一章讲“契丹算法”。 第八章“方程”讲述线性方程组的解法,还论及正负数概念及运算方法。 采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线
36、性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术正负数的加减法则。这是世界数学史上一项重大的成就。 第八章“方程”讲述线性方程组的解法,还论及正负数概念及运算方法。 采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术正负数的加减法则。这是世界数学史上一项重大的成就。
37、方程术例题 今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何? 正负术 李文林在数学史教程中指出:“对负数的认识是人类数系扩充的重大步骤。如果说古希腊无理量是演绎思维的发现,那么中算负数则是算法思维的产物。中算家们心安理得地接受并使用了这一概念,并没有引起震撼和迷惑。” 国外首先承认负数的是7世纪印度数学家婆罗门及多,欧洲16世纪时韦达等数学家的著作还回避使用负数。 勾股术 第九章“勾股”在周髀算经中勾股定理的基础上,形成了应用问题的“勾股术”,从此它成了中算中重要的传统内容之一。 提出
38、了勾股数问题的通解公式,在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比九章算术晚约3个世纪了。 刘徽的数学成就刘徽的数学成就 刘徽的九章算术注包含了他本人的许多创造,其中最突出的成就是“割圆术”和求积理论。 若设圆面积为 ,内接正n边形边长为 ,面积为 则OABCD0SnlnS2222211,22nnnllrrl212nnSnl r2022()nnnnSSSSS圆周率 刘徽用“割圆术”从圆内接正六边形出发,算到圆内接正192=625边形,得到 “徽率”3.14。 推测祖冲之可能也是沿用了“割圆术”,计算到圆内接正24576=6212边形
39、,即可得祖冲之的结果。刘徽的求积理论 刘徽的面积、体积理论建立在一条简单而又基本的原理之上,这就是“出入相补原理”。刘徽用这条原理成功地证明了九章算术中的许多面积公式。 刘徽在推证九章算术中的一些体积公式时,灵活地使用了两种无限小方法:极限方法与不可分量方法。比如,“阳马” 体积公式便是用极限方法推导出来的,而球体积公式的推导则使用了不可分量方法。 为计算球体积,刘徽提出“牟合方盖”。祖冲之父子的数学成就祖冲之父子的数学成就 圆周率的计算:3.14159263.1415927 球体积的推导:祖氏原理,即两等高立体图形,若在所有等高处的水平截面积相等,则这两个立体体积相等。 代表性著作:缀术算经
40、十书算经十书 出于官方数学教育的需要,唐高宗亲自下令对以前的数学著作进行整理。公元656年由李淳风负责编定了算经十书:周髀算经、九章算术、孙子算经、五曹算经、张邱建算经、夏侯阳算经、缉古算经、海岛算经、五经算术和缀术,后因缀术失传,而以数术记遗替代。 孙子算经 鸡兔同笼鸡兔同笼今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?答曰:雉二十三,兔一十二。 术曰:上置头,下置足,半其足,以头除足,以足除头,即得。 物不知数物不知数今有物,不知其数。三三数之,剩二;五五数之剩三;七七数之,剩二。问物几何?答曰:二十三。 孙子歌 明代数学家程大位的算法统宗中所载的“孙子歌”以诗歌形式介绍了物不
41、知数问题的解法:“三人同行七十稀,五树梅花廿一枝,七子团圆整半月,除百零五便得知。” 这一问题的解法后经秦九韶推广到一般情形,被称为“孙子定理”,又称为“中国剩余定理”。 宋元数学宋元数学 宋元时期(960-1368)的杰出数学家秦九韶、杨辉、李冶、朱世杰被称为“宋元四大家”。 宋元时期的数学代表著作有数书九章(秦九韶)、详解九章算法(杨辉)、益古演段(李冶)和四元玉鉴(朱世杰)等 秦九韶的数学成就 高次方程数值解法领域的集大成者。 正负开方术 大衍总数术:即一次同余组的一般解法中国剩余定理中国剩余定理 秦九韶的算法非常严密,但他并没有对这一算法给出证明。到18、19世纪欧拉(1743)和高斯
42、(1801)分别对一次同余式组进行了详细研究,重新独立地获得了与秦九韶“大衍术”相同的定理,并对模数两两互素的情形给出了严格证明。高斯的成果是最完整的,他还解决了模不是两两互素时的情形。1876年德国人马蒂生首先指出秦九韶的算法与高斯的算法是一致的,因此关于这一算法被称作“中国剩余定理”。 第四讲 平面解析几何的产生 16世纪之前的数学基本上是常量数学,而近代数学的本质却是变量数学。16世纪,对运动与变化的研究已经变成自然科学的中心问题,这就需要有一种新的数学工具,从而导致了变量数学也就是近代数学的诞生。变量数学的第一个里程碑是解析几何的发明,然后就是微积分的发明。笛卡儿的解析几何 笛卡儿于1
43、637年发表了著名的哲学著作更好地指导推理和寻求科学真理的方法论,该书有三个附录几何学、屈光学、气象学,解析几何的发明包含在几何学这篇附录中。 笛卡儿在另一部较早的哲学著作指导思维的法则中了一般某种一般方法,其思路是: 任何问题任何问题数学问题数学问题代数问题代数问题方程问题方程问题。笛卡儿创立解析几何的传说 一个传说讲,笛卡儿终身保持着在耶酥会学校读书时养成的“晨思”习惯,在一次晨思时,看见一只苍蝇正在天花板上爬,他突然想到,如果知道了苍蝇与相邻两个墙壁的距离之间的关系,就能描述它的路线,这使他头脑中产生了关于解析几何的最初闪念。 另一个传说是,1619年冬天,笛卡儿随军队驻扎在多瑙河畔的一
44、个村庄,在圣马丁节的前夕(11月10日),他作了三个连贯的梦,从而揭示解析几何的发现。笛卡儿 笛卡儿出生于法国的贵族家庭,早年受教于耶酥会学校,曾于1617年和1619年两次从军,离开军营后,旅行于欧洲,他的学术研究是在军旅和旅行中作出的。 笛卡儿对许多学科领域都有重要贡献。古今数学思想对笛卡儿有这样一个评价:“他是第一个杰出的近代哲学家,是近代生物学的奠基人,是第一流的物理学家,但只偶然是个数学家。”费马猜想 费马大定理: 时,方程 没有正整数解。 费马小定理:p为素数, ,则2n 222xyz( , )1a p 11(mod)pap第五讲 微积分的诞生 17世纪最伟大的数学成就是微积分的发
45、明。微积分是描述运动过程的数学,它的产生为力学、天文学以及后来的电磁学等提供了必不可少的工具。微积分产生的前提有两个:几何坐标和函数概念。而这两个方面由于笛卡儿和费马等人的工作,其基础已基本具备。现代科技的推动力 对微积分的发明起了直接推动作用的是现代科技的发展。17世纪,开普勒提出行星运行定律,从数学上推证这些定律成了当时自然科学的中心课题,伽利略的自由落体定律、动量定律、抛物体运动性质等也激起了人们用数学方法研究动力学的热情。凡此一切都归结为如下一些基本问题:确定非匀速运动物体的速度和加速度需要研究瞬时变化率问题;望远镜的设计需要确定透镜曲面上任一点的法线因而需要研究曲线的切线问题;确定炮
46、弹的最大射程等需要研究最大、最小值;确定行星运行的路程、向径扫过的面积等又需要计算曲线长、曲边图形的面积等。这一切都需要有一种新的计算工具的诞生。牛顿、莱布尼茨之前的微积分方法 微积分理论的建立聚集了许许多多数学家的努力,如: 开普勒的求积术 卡瓦列里不可分量原理 笛卡儿求切线方程的“圆法” 费马求极大、极小值的方法 巴罗的“微分三角形” 沃利斯的“无穷算术” 牛顿对微积分问题的研究始于1664年秋,当时他正在剑桥大学学习。他因对笛卡尔圆法发生兴趣而开始寻找更好的切线求法。1665年11月,牛顿发明“正流数术正流数术”(微分法),次年5月又建立了“反流数术反流数术”(积分法)。1666年10月
47、,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以流数简论流数简论著称,它是历史上第一篇系统的微积分文献。 流数简论反映了牛顿微积分的运动学背景。在牛顿以前,面积总被看成是无限小不可分量之和,而牛顿则从确定面积的变化率入手,通过反微分计算面积。面积计算与求切线问题的互逆关系,在牛顿这里被明确地作为一般规律揭示出来,并成了建立微积分普遍算法的基础。牛顿的正、反流数术亦即微分与积分,通过揭示它们互逆关系的所谓“微积分基本定理”统一为一个整体。正是在这样的意义下,我们说牛顿发明了微积分。 流数术解决的基本问题 牛顿在流数简论中提出并解决了如下基本问题:(1)设有两个或更多个物体在同一时间内描画线
48、段x,y,z,已知表示这些线段关系的方程,求它们的速度p,q,r,。 (2)已知表示线段x和运动速度之比p/q的关系方程式,求另一线段y。微积分基本定理 这两个问题实际上是对微积分可解决的一些特殊问题的一般化,如求瞬时速度、切线斜率就可归结为第一问题,而第二问题明显是第一问题的逆运算。 牛顿把他问题(2)看成问题(1)的逆运算,并给出了标准解法。流数简论讨论了如何借助于逆运算来求面积,从而建立了“微积分基本定理”。 流数简论标志着微积分的诞生,但它在许多方面是不成熟的。所以,牛顿对于自己的发现并未作太多宣扬。他在这一年10月当选为剑桥大学三一学院成员,次年又获硕士学位,并不是因为他在微积分方面
49、的工作,而是因为在望远镜制作方面的贡献。但从那时起直到1693大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后写成了三篇微积分论文:分析学(1669)、流数法(1671)、求积术(1691)。它们真实再现了牛顿创建微积分学说的思想历程。 流数简论标志着微积分的诞生,但它在许多方面是不成熟的。所以,牛顿对于自己的发现并未作太多宣扬。他在这一年10月当选为剑桥大学三一学院成员,次年又获硕士学位,并不是因为他在微积分方面的工作,而是因为在望远镜制作方面的贡献。但从那时起直到1693大约四分之一世纪的时间里,牛顿始终不渝努力改进、完善自己的微积分学说,先后写成了三篇微积分论文
50、:分析学(1669)、流数法(1671)、求积术(1691)。它们真实再现了牛顿创建微积分学说的思想历程。 牛顿对于发表自己的科学著作态度谨慎。上述三篇论文的发表都很晚,流数法甚至在他去世后才正式发表。牛顿微积分学说最早的公开表述出现在1687年出版的力学名著自然哲学的数学原理之中。因此该书也成为数学史上的划时代著作。 从光学研究到引力的研究 1670年起,牛顿主要研究光学,制造反射望远镜,发现了太阳光的合成性质,并被选为皇家学会会员。正是在光学领域中发生了他与胡克(R.Hooke,16351703)的争吵,既影响了科学研究的气氛,也影响了牛顿的健康。经过近十年的中断,1679年底牛顿的注意力