1、空域滤波器空域滤波和空域滤波器的定义: 使用空域模板进行的图像处理,被称为空域滤波。模板本身被称为空域滤波器。空间域滤波器分类 平滑空域滤波器 锐化空域滤波器空间滤波和空间滤波器的定义在MN的图像f上,使用mn的滤波器:),(),(),(tysxftswyxgbbtaas12, 12bnam空间滤波的简化形式:mnmnzwzwzwR2211其中,w是滤波器系数,z是与该系数对应的图像灰度值,mn为滤波器中包含的像素点总数。在空域滤波功能都是利用模板卷积模板卷积,主要步骤为:(1) 将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2) 将模板上系数与模板下对应像素相乘;(3) 将所有乘积
2、相加;(4) 将和(模板的输出响应)赋给图中对应模板中心位置的像素。例:模板滤波示意:sXYxyXYxyR(a)(b)(c)4s2385sssssss76104kkkkkk32kkk50167800881100skskskR模板的输出为:平滑空域滤波器作用 (1)模糊处理:去除图像中一些不重要的细节。 (2)减小噪声。平滑空间滤波器的分类 (1)线性平滑滤波器:均值滤波器 (2)非线性平滑滤波器: 最大值滤波器 中值滤波器 最小值滤波器线性平滑滤波器包含在滤波器邻域内像素的平均值,也称为均值滤波器。作用(1)减小图像灰度的“尖锐”变化,减小噪声。(2)由于图像边缘是由图像灰度尖锐变化引起的,所
3、以也存在边缘模糊的问题。线性平滑滤波器图a是标准的像素平均值。图b是像素的加权平均,表明一些像素更为重要。aasbbtaasbbttswtysxftswyxg),(),(),(),(加权均值滤波器线性平滑滤波器例例13 x 35 x 59 x 915 x 1535 x 35原图图像说明: 顶端的黑方块,大小分别为3,5,9,15,25,35,45,55个像素,边界相隔25个像素。位于底端的字母在10到24个像素之间,增量为2个像素。垂直线段5个像素宽,100个像素高,间隔20个像素。圆的直径25个像素,边缘相隔15个像素。灰度以20%增加。噪声矩形大小是50*120像素。结果分析:(1)噪声明
4、显减少,但图像变模糊了。尤其是图像细节域滤波器近似相同时。(2)滤波器越大,模糊程度加剧。线性滤波器例例2提取感兴趣物体而模糊图像统计排序滤波器什么是统计排序滤波器?是一种非线性滤波器,基于滤波器所在图像区域中像素的排序,由排序结果决定的值代替中心像素的值。分类:(1)中值滤波器: 用像素领域内的中间值代替该像素。(2)最大值滤波器:用像素领域内的最大值代替该像素。(3)最小值滤波器:用像素领域内的最小值代替该像素。统计排序滤波器中值滤波器 主要用途:去除噪声 计算公式:R = mid zk | k = 1,2,n最大值滤波器 主要用途:寻找最亮点 计算公式:R = max zk | k =
5、1,2,n最小值滤波器 主要用途:寻找最暗点计算公式:R = min zk | k = 1,2,n中值滤波器中值滤波的原理 用模板区域内像素的中间值,作为结果值 R = mid zk | k = 1,2,n强迫突出的亮点或暗点更象它周围的值,以消除孤立的亮点或暗点。中值滤波器中值滤波算法的实现将模板区域内的像素排序,求出中间值例如: 3x3的模板,第5大的是中值, 5x5的模板,第13大的是中值, 7x7的模板,第25大的是中值, 9x9的模板,第41大的是中值。对于同值像素,连续排列。 如(10,15,20,20,20,20,20,25,100)中值滤波器中值滤波算法的特点: (1)在去除噪
6、音的同时,可以比较好地保留边的锐度和图像的细节(优于均值滤波器) (2)能够有效去除脉冲噪声:以黑白点(椒盐噪声)叠加在图像上中。中值滤波器3x3均值滤波3x3中值滤波原图实例:原图像高斯噪声椒盐噪声高斯噪声图的55十字中值滤波噪声椒盐噪声图的55十字中值滤波噪声最大值滤波器最小值滤波器锐化空间滤波器锐化空间滤波器主要用于增强图像的边缘及灰度跳变部分主要用于增强图像的边缘及灰度跳变部分邻域平均方法积分过程结果使图像的邻域平均方法积分过程结果使图像的边缘模糊边缘模糊锐化方法微分过程结果使图像的边锐化方法微分过程结果使图像的边缘突出缘突出注意:注意:噪声的噪声的影响影响先去噪,再锐化操作先去噪,再
7、锐化操作锐化空间滤波基础对微分的定义可以有各种表述,这里必须保证如下几点(1)在平坦段为0(2)在灰度阶梯或斜坡的起始点处为非0( )(3)沿着斜坡面微分值非0( )二阶微分也类似:(1)平坦区为0(2)在灰度阶梯或斜坡的起始点及中止点处为非0( )(3)沿常数斜率的斜坡面的微分0(=0)对于一元函数表达一阶微分:二阶微分:000(1)( )ff xf xx22(1)(1)2 ( )ff xf xf xx结论:结论: (1)一阶微分产生的边缘宽(如:沿斜坡很长一段非0);(2)二阶微分对细节反应强烈如细线、孤立点(斜坡起止点为非0);(3)一阶微分对灰度阶跃反应强烈;(4)二阶微分对灰度阶梯变
8、化产生双响应,在大多数应用中,对图像增强来说,二阶微分化一阶微分好一些。 在图像中一阶微分用梯度法来实现,梯度用一个二维列向量来定义模值:实际中往往用梯度模值代替梯度为减少计算量,用下式算近似: fGxxffGyy 12221222() xyfmagfGGffxy xyfGG 基于一阶微分的图像增强梯度法右图给出了Roberts算子和Sobel算子: 考虑一个3x3的图像区域,z代表灰度级,上式在点z5的f值可用数字方式近似。z5z1z2z3z4z6z7z8z95856zzzzfRoberts交叉梯度算子:f |z9 - z5| + |z8 z6|梯度计算由两个模板组成,第一个求得梯度的第一项
9、,第二个求得梯度的第二项,然后求和,得到梯度。两个模板称为Roberts交叉梯度算子。-10010-110Prewitt梯度算子3x3的梯度模板f |(z7 +z8 + z9) - (z1 + z2 + z3) | +|(z3 +z6 + z9) - (z1 + z4 + z7) |-1-100-10111-10-1011-101Sobel梯度算子3x3的梯度模板f |(z7 +2z8 + z9) - (z1 + 2z2 + z3) | +|(z3 +2z6 + z9) - (z1 + 2z4 + z7) |-1-200-10121-10-2012-101例子 如下图所示:处理方法:拉普拉斯算
10、子:由前边:在x方向上:在y方向上:则有: 22222fffxy22(1, )(1, )2 ( , )ff xyf xyf x yx22( ,1)( ,1)2 ( , )ff x yf x yf x yy),(4)1,() 1,(), 1(), 1(22yxfyxfyxfyxfyxfyf基于二阶微分的图像增强一拉普拉斯算子图像相减时,可能出现负值,如何来解决?例如:0255差图像要进行标定:每一像素+255然后除以2优点,简单,快速缺点:无法保证覆盖0255全范围先提取最小值取反后加在差图像中然后用乘每一像素可保证结果具体执行的模板右图图 中心正中心负拉普拉斯算子是强调灰度突变而减加重灰度慢变
11、化的区域。具体办法是:把原图像拉普拉斯图像叠加在一起,这样既能保护拉氏锐化效果,同时又能复原背景信息。拉氏模板中心轴为负拉氏模板中心轴为正具体实例如下页图所示:22( , )( , )( , )( , )( , )f x yf x yg x yf x yf x y简化:上边的过程实际中可用一步来完成而把会成,即把合成与拉氏计算会起来。最终模板 如右图所示: 把各种互补的图像增强技术结合起来,实践复杂的增强任务举例:骨骼图像处理:目的:突出骨骼的更多细节策略:先用拉氏算子突出图像中的小细节,然后用梯度法突出其边缘,平滑过的梯度图像用于屏蔽拉氏图像,最后用灰度变换扩展灰度动态范围。原图:月球北极拉普拉斯滤波后的图像33,中心点为8的掩膜标定的图像原始图像拉普拉斯的结果