1、 矢量微分矢量微分 直角坐标系中的矢量微分直角坐标系中的矢量微分 曲线坐标系中的矢量微分曲线坐标系中的矢量微分 矢量微分应用举例矢量微分应用举例 矢量积分矢量积分 直角坐标系中的矢量积分直角坐标系中的矢量积分 曲线坐标系中的矢量积分曲线坐标系中的矢量积分任何一个矢量,都可以表示成的形式,其中 , 是 的单位矢量。从而在直角坐标系中,由于基失是常矢量,不难得到在曲线坐标系中,由于基矢方向可变,故曲线坐标系中的矢量微分比起直角坐标系来相对要复杂些。直角坐标系中的矢量微分直角坐标系中的矢量微分AAaAAaAdAdAaAdaxyzdAdA idA jdA k1.在极坐标系(三维即为柱坐标系) 中,应用
2、几何知识,可以得出。则曲线坐标系中的矢量微分曲线坐标系中的矢量微分cossinreijsincoseij zeksincosrdeij dd e cossinrdeij dd e 0zde 设柱坐标系中的任意矢量为则曲线坐标系中的矢量微分曲线坐标系中的矢量微分rrzzAA eA eA errrrzzrrrzzdAdA eA d edA eA d edA edAA dedAA dedA e2.在球坐标系中,同样应用几何知识可得则曲线坐标系中的矢量微分曲线坐标系中的矢量微分sincossinsincosreijkcoscoscossinsineijksincoseij sinrded ed e c
3、osrded ed e cossindedij 微分的结果,已无法在球坐标系中表述。在理论力学中,为研究方便起见,引入辅助基矢 ,它相当于直角坐标系中的 ,是球坐标系中 时的 ,于是曲线坐标系中的矢量微分曲线坐标系中的矢量微分errded ed kerded ed ke ded kekk0re设则曲线坐标系中的矢量微分曲线坐标系中的矢量微分rrAA eA eA e r rrrrrrrrrrdA dAeAd eAd k edAeAd ed k edAeA d k edAAdedAAdedAedAk eAk eA k e 求地球表面物体的运动受力情况。解:地球时刻不停地在自转,因此在地球表面的物体
4、,无论是其运动状况还是其受力状况,都不可避免地受地球自转的影 响。我们不妨把地球视为理想球体,并把所求的问题放在以球心为坐标原点,以地球自转轴为 的球坐标系中来处理。设地球半径为R,自转角速度为 ,任意时刻 A 物体的位置矢量显然是 ,速度 ,根据球坐标中的微分表达式有:矢量微分的应用举例矢量微分的应用举例00errRrvdr dtRdedtrvRddteRddtke令 而 ,则这里, 中包含 ,把 分离出来,则物体相对于地球运动的分速度为因地球自转而使物体有一个牵连分速度即使物体相对于地球表面静止, 仍然存在,这就是所谓的“坐地日行八百里”。物体的加速度 为矢量微分的应用举例矢量微分的应用举
5、例k,ddtddt rvR eRe000vR er 0vr va从而这个结论在理论力学中很重要,可用来解释许多 自然现象。这里讨论两种特殊情况:矢量微分的应用举例矢量微分的应用举例22222cossincosrrdvdaR erdtdtdedddrReRrdtdtdtdtddReReRerR erdtdtddReReRReRkdtdt 2222cossincosrddFmamRemRemRRemRkdtdt (1).当物体相对于地面静止时 , 从而 ,又 ,故 。此时物体所受的力为:由于 的存在,致使物体受力 (重力)不指向地心( 的反方向),并随地球纬度的改变而不同。(2).当物体做纬向运动
6、时, , ,此时物体所受力中有一个径向分力 。令 , , 。则此径向分力可改写为 ,这个力就是科里奥利力,用科氏力可以解释河流冲刷右岸等自然现象。矢量微分的应用举例矢量微分的应用举例0ddt 0ddt0C0ddt2200cosrFmRemRk 20cosmRkre0C0ddt02cosmReRv vev00k02mv 矢量微分矢量微分 直角坐标系中的矢量微分直角坐标系中的矢量微分 曲线坐标系中的矢量微分曲线坐标系中的矢量微分 矢量微分应用举例矢量微分应用举例 矢量积分矢量积分 直角坐标系中的矢量积分直角坐标系中的矢量积分 曲线坐标系中的矢量积分曲线坐标系中的矢量积分在直角坐 标系中,由于基矢方
7、向恒定,矢量积分可以直接进行。例:求载流直导线周围的磁感强度解:设直角坐标系如图,即原点在导线中心轴上,让y轴与导线中心轴重合,y 轴方向与电流同向,让x轴通过场点p,则于是,直角坐标系中的矢量积分直角坐标系中的矢量积分22,.dldyj rxiyj rxy,dlrxdyk 2211003 2322021222221444yyyyIIxdlrdyBkrxyIyykxxyxy (1).如果导线长为L ,且 ,即求导线中垂直面上的磁感强度,则(2).如果导线无限长( ),则直角坐标系中的矢量积分直角坐标系中的矢量积分Lx12yy 02224ILBkxxL 02IBkx 在曲线坐标中,由于基矢方向可
8、变,矢量积分应慎重。例:求圆形载流线圈中心轴上的 。解:设柱坐标系如图,则这个答案明显是错误的,因为被积矢量中基矢 本身是一个会随着积分变量而改变的变矢量。曲线坐标系中的矢量积分曲线坐标系中的矢量积分BdldleRd ezrReze 22rzR2zdlrR d eRzd e222003 2300222003 23 222224422zLzIIdlrBR deRzderRzIRIRzeeRzRze如果将 表示成某一定点基矢的函数 ,答案就不会错了。曲线坐标系中的矢量积分曲线坐标系中的矢量积分00222003 23002222203 20022203 22244cossin42zLzzIIdlrBR deRzderRzIR deRzdeeRzIReRze00cossineee而在有些情况下,曲线坐标系中进行矢量积分,又会得到非常理想的结果。例:求无限长载流 直导线周围的磁感应强度 。解:我们把它放在柱坐标系中解决。设 Z 轴与导线重合并与电流同向,得结果是正确的,恰好体现了右手定则,这是因为被积矢量的基矢 与积分变量 无关。曲线坐标系中的矢量积分曲线坐标系中的矢量积分B0003 23 22222442LIIIdlrdzBeeRzRzRzdldzezrReze22rzRdlrRdzeezTHANK YOU !