1、14.3.2 公式法第十四章 整式的乘法与因式分解第2课时 运用完全平方公式因式分解学习目标1.理解并掌握用完全平方公式分解因式(重点)2.灵活应用各种方法分解因式,并能利用因式分解 进行计算(难点)导入新课导入新课复习引入1.因式分解:把一个多项式转化为几个整式的积的形式.2.我们已经学过哪些因式分解的方法?1.提公因式法2.平方差公式a2-b2=(a+b)(a-b)讲授新课讲授新课用完全平方公式分解因式一你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?同学们拼出图形为:aabbababababab这个大正方形的面积可以怎么求?a2+2ab+b2(a+b)2 =baababb(a
2、+b)2 a2+2ab+b2=将上面的等式倒过来看,能得到: a2+2ab+b2 a22ab+b2 我们把a+2ab+b和a-2ab+b这样的式子叫作完全平方式.观察这两个式子:(1)每个多项式有几项?(3)中间项和第一项,第三项有什么关系?(2)每个多项式的第一项和第三项有什么特征?三项这两项都是数或式的平方,并且符号相同是第一项和第三项底数的积的2倍完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的2倍. 222baba 完全平方式:简记口诀: 首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式,将它写成完
3、全平方形式,便实现了因式分解.2ab+b2=(a b)a2首2+尾22首尾(首尾)2两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方. 3.a+4ab+4b=( )+2 ( ) ( )+( )=( ) 2.m-6m+9=( ) - 2 ( ) ( )+( ) =( ) 1. x+4x+4= ( ) +2( )( )+( ) =( )x2x + 2 aa 2ba + 2b2b对照 a2ab+b=(ab),填空:mm - 33x2 m3 下列各式是不是完全平方式? (1)a24a+4; (2)1+4a; (3)4b2+4b-1; (4)a2+ab+b2; (5)x2+
4、x+0.25.是(2)因为它只有两项;不是(3)4b与-1的符号不统一;不是分析:不是是(4)因为ab不是a与b的积的2倍.例1 如果x2-6x+N是一个完全平方式,那么N是( ) A . 11 B. 9 C. -11 D. -9B解析:根据完全平方式的特征,中间项-6x=2x(-3),故可知N=(-3)2=9.变式训练 如果x2-mx+16是一个完全平方式,那么m的值为_.解析:16=(4)2,故-m=2(4),m=8.8典例精析方法总结:本题要熟练掌握完全平方公式的结构特征, 根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避
5、免漏解例2 分解因式:(1)16x2+24x+9; (2)- -x2+4xy- -4y2.分析:(1)中, 16x2=(4x)2, 9=3,24x=24x3, 所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+ 24x3 + (3)2.2ab+b2a2(2)中首项有负号,一般先利用添括号法则,将其变形为- -(x2- -4xy+4y2),然后再利用公式分解因式.解: (1)16x2+ 24x +9 = (4x + 3)2;= (4x)2 + 24x3 + (3)2 (2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.例3 把下列
6、各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.解: (1)原式=3a(x2+2xy+y2) =3a(x+y)2;分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36. (2)原式=(a+b)2-2(a+b) 6+62 =(a+b-6)2.利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.例4 把下列完全平方公式分解因式:(1)1002210099+99;(2)3423432162. 解:(1)原式=(10099)
7、 (2)原式(3416)2本题利用完全平方公式分解因式,可以简化计算,=1.2500.例5 已知x24xy210y290,求x2y22xy1的值112121.解:x24xy210y290,(x2)2(y5)20.(x2)20,(y5)20,x20,y50,x2,y5,x2y22xy1(xy1)2几个非负数的和为0,则这几个非负数都为0.方法总结:此类问题一般情况是通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答问题例6 已知a,b,c分别是ABC三边的长,且a22b2c22b(ac)0,请判断ABC的形状,并说明理由ABC是等边三角形解:由a22b2c22b(ac)0,得 a22a
8、bb2b22bcc20,即(ab)2(bc)20,ab0,bc0,abc,当堂练习当堂练习1.下列四个多项式中,能因式分解的是( ) Aa21 Ba26a9 Cx25y Dx25y2.把多项式4x2y4xy2x3分解因式的结果是( )A4xy(xy)x3 Bx(x2y)2Cx(4xy4y2x2) Dx(4xy4y2x2)3.若m2n1,则m24mn4n2的值是_BB14.若关于x的多项式x28xm2是完全平方式,则m的值为_ 42(20142013)1.22(2014)2 2014 2013 (2013) (2)原式22(2)20142014 40262013 . 4.计算:(1)38.92238.948.948.92.解:(1)原式(38.948.9)2100.5.(1)已知ab3,求a(a2b)b2的值; (2)已知ab2,ab5,求a3b2a2b2ab3的值原式25250.解:(1)原式a22abb2(ab)2.当ab3时,原式329.(2)原式ab(a22abb2)ab(ab)2.当ab2,ab5时,课堂小结课堂小结完全平 方公式分 解因式公式公式a22ab+b2=(ab)2特点特点(1 1)要求多项式有三项三项. .(2 2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.