1、八年级八年级 下册下册 18.1.2平行四边形的判定(平行四边形的判定(1)杨成庄中学杨成庄中学 王晓雪王晓雪平行四边形的定义:平行四边形的定义:两组对边分别平行的四边形叫两组对边分别平行的四边形叫做平行四边形做平行四边形平行四边形的性质:平行四边形的性质:对边相等,对角相等,对角线对边相等,对角相等,对角线互相平分互相平分?判判定定性性质质定定义义复习反思引出课题复习反思引出课题 D A B C 判判定定性性质质定定义义复习反思引出课题复习反思引出课题 D A B C 逆向思考提出猜想逆向思考提出猜想 两组对边分别相等的两组对边分别相等的四边形是平行四边形四边形是平行四边形平行四边形的性质平
2、行四边形的性质 猜想猜想对边相等对边相等对角相等对角相等对角线互相平分对角线互相平分两组对角分别相等的两组对角分别相等的四边形是平行四边形四边形是平行四边形对角线互相平分的四对角线互相平分的四边形是平行四边形边形是平行四边形思考:这些猜想正确吗?思考:这些猜想正确吗? 证明:证明:连接连接BDAB= =CD,AD= =BC, BD是公共边,是公共边,ABDCDB1=2,3=4ABDC,ADBC四边形四边形ABCD是平行四边形是平行四边形如图,在四边形如图,在四边形ABCD中,中,AB= =CD,AD= =BC求证:四边形求证:四边形ABCD是平行四边形是平行四边形 演绎推理形成定理演绎推理形成
3、定理 两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形判定定理判定定理1 猜想猜想1 D A B C 1234证明:证明:多边形多边形ABCD是四边形,是四边形,A+B+C+D= =360又又A= =C,B= =D,A+ +B= =180, B+C= =180 ADBC,ABDC四边形四边形ABCD是平行四边形是平行四边形 如图,在四边形如图,在四边形ABCD中,中,A=C,B=D求证:四边形求证:四边形ABCD是平行四边形是平行四边形 演绎推理形成定理演绎推理形成定理 两组对角分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形判定定理判定定理2 猜想猜想
4、2 D A B C 如图,在四边形如图,在四边形ABCD中,中,AC,BD相交于点相交于点O,且,且OA= =OC,OB= =OD求证:四边形求证:四边形ABCD是平行四边形是平行四边形 演绎推理形成定理演绎推理形成定理 对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形判定定理判定定理3 D A B C O 猜想猜想3 证明:证明:OA= =OC,OB= =OD,AOD=COB, AODCOBOAD=OCBADBC同理同理ABDC四边形四边形ABCD是平行四边形是平行四边形现在,我们一共有哪些判定平行四边形的方法呢?现在,我们一共有哪些判定平行四边形的方法呢?定义:定义:两
5、组对边分别平行的四边形叫做平行四边两组对边分别平行的四边形叫做平行四边形形判定定理:判定定理: (1)两组对边分别相等的四边形是平行四边形;)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形)对角线互相平分的四边形是平行四边形阶段小结阶段小结 证明:证明:AB= =DC,AD= =BC,四边形四边形ABCD是平行四边形是平行四边形ABDC又又DC= =EF,DE= =CF,四边形四边形DCFE也是平行四边形也是平行四边形DCEFABEF直接运用巩固知识直接运用巩固知识 例例1如图,
6、如图,AB= =DC= =EF,AD= =BC,DE= =CF求证:求证:ABEFABCDEF灵活运用掌握知识灵活运用掌握知识 例例2 如图,如图, ABCD中,中,E,F分别分别是对角线是对角线AC 上上的两点,并且的两点,并且 AE= =CF求证:四边形求证:四边形BFDE是平行四边是平行四边形形ABCDEFO 还有其他证明方法吗?还有其他证明方法吗?你更喜欢哪一种证法你更喜欢哪一种证法 ABCDEF灵活运用掌握知识灵活运用掌握知识 O 在上题中,若点在上题中,若点E,F 分别在分别在AC 两侧的延长线上,两侧的延长线上,如图,其他条件不变,结论还成立吗?请证明你的结论如图,其他条件不变,结论还成立吗?请证明你的结论 平行四边形的判定定理:平行四边形的判定定理:(1)两组对边分别相等的四边形是平行四边形;)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形)对角线互相平分的四边形是平行四边形 课堂小结课堂小结 作业作业:教科书第教科书第47页练习第页练习第1,2,4题;题; 习题习题18. .1第第4,5题题课后作业课后作业