2017年普通高等学校招生全国统一考试(江苏卷)数学试题解答版.doc

上传人(卖家):四川三人行教育 文档编号:2539472 上传时间:2022-05-02 格式:DOC 页数:21 大小:2.04MB
下载 相关 举报
2017年普通高等学校招生全国统一考试(江苏卷)数学试题解答版.doc_第1页
第1页 / 共21页
2017年普通高等学校招生全国统一考试(江苏卷)数学试题解答版.doc_第2页
第2页 / 共21页
2017年普通高等学校招生全国统一考试(江苏卷)数学试题解答版.doc_第3页
第3页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、绝密启用前【试卷点评】【命题特点】2017年江苏高考数学试卷,在保持稳定的基础上,进行适度的改革和创新,对数据处理能力、应用意识的要求比以往有所提高。2017年江苏数学试卷在“稳中求进”中具体知识点有变化。 1.体现新课标理念,实现平稳过渡。试卷紧扣江苏考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。对传统内容的考查在保持平稳的基础上进行了适度创新。如第7题首次考查几何概型概率问题。 2.关注通性通法。试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求。 如第17题解析几何考查两直线交点以及点在曲线上。第20题以极

2、值为载体考查根与系数关系、三次方程因式分解。第19题以新定义形式多层次考查等差数列定义。3.体现数学应用,关注社会生活。第10题以实际生活中运费、存储费用为背景的基本不等式求最值问题,第18题以常见的正四棱柱和正四棱台为背景的解三角形问题,体现试卷设计问题背景的公平性,对推动数学教学中关注身边的数学起到良好的导向。 4.附加题部分,前四道选做题对知识点的考查单一,方法清晰,学生入手较易。两道必做题一改常规,既考查空间向量在立体几何中应用,又考查概率分布与期望值,既考查运算能力,又考查思维能力。【试卷解析】参考公式:柱体的体积,其中是柱体的底面积,是柱体的高.球体积公式,其中是球的半径.一、填空

3、题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合,若则实数的值为 .【答案】1【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.2. 已知复数其中i是虚数单位,则的模是 .【答案】 【考点】复数的模【名师点睛】对于复数的四则运算,要切实

4、掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.【答案】18【解析】所求人数为,故答案为18【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即niNinN.中华.资*源%库 4. 右图是一个算法流程图,若输入的值为,则输

5、出的的值是 .【答案】 【解析】由题意,故答案为2【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 若 则 .【答案】 【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,

6、便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.6. 如图,在圆柱内有一个球,该球与圆柱的上、下面及母线均相切.记圆柱的体积为,球的体积为,则的值是 . 【答案】 【解析】设球半径为,则故答案为【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进Z行求解 (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解7. 记函数的定义域为.在区间上随机取一个数,则的概率是 .【答案】 【考

7、点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率8. 在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,其焦点是,则四边形的面积是 .【答案】【考点】双曲线渐近线【名师点睛】1.已知双曲线方程求渐近线:2.已知渐近线 设双曲线标准方程3,双曲线焦点

8、到渐近线距离为,垂足为对应准线与渐近线的交点.9. 等比数列的各项均为实数,其前项的和为,已知,则= .【答案】32【解析】当时,显然不符合题意;当时,解得,则.【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.10

9、. 某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元,要使一年的总运费与总存储之和最小,则的值是 .【答案】30【解析】总费用,当且仅当,即时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11. 已知函数, 其中e是自然对数的底数. 若,则实数的取值范围是 .【答案】 【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为的形

10、式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内12. 如图,在同一个平面内,向量,的模分别为1,1,与的夹角为,且tan=7,与的夹角为45.若, 则 . 【答案】3 【解析】由可得,根据向量的分解,易得,即,即,即得,所以.【考点】向量表示【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值

11、域,是解决这类问题的一般方法.(3)向量的两个作用:载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.13. 在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 .【答案】 【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14. 设是定义在且周期为1的函数,在区间上, 其中集合,

12、则方程的解的个数是 .【答案】8【解析】由于 ,则需考虑 的情况在此范围内, 且 时,设 ,且 互质若 ,则由 ,可设 ,且 互质因此 ,则 ,此时左边为整数,右边非整数,矛盾,因此 【考点】函数与方程【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤 15.(本小题满分14分) 如图,在三棱锥A-B

13、CD中,ABAD, BCBD, 平面ABD平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD. 求证:(1)EF平面ABC; (2)ADAC.【答案】(1)见解析(2)见解析【解析】证明:(1)在平面内,因为ABAD,所以.【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.16.(本小题满分14分) 已知向量 (1)若ab,求x的值; (2)记,求的最大值和最小值

14、以及对应的的值.【答案】(1)(2)时,取得最大值,为3; 时,取得最小值,为.【解析】解:(1)因为,ab,(2).因为,所以,从而.于是,当,即时,取到最大值3;当,即时,取到最小值.【考点】向量共线,数量积【名师点睛】(1)向量平行:,,(2)向量垂直:,(3)向量加减乘: 17.(本小题满分14分) 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线. (1)求椭圆的标准方程; (2)若直线的交点在椭圆上,求点的坐标.F1 O F2xy(第17题)【答案】(1)(2)【解析】解:(1)设

15、椭圆的半焦距为c. 从而直线的方程:, 直线的方程:. 由,解得,所以.因为点在椭圆上,由对称性,得,即或.因此点P的坐标为.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.18.(本小题满分16分) 如图,水平放置的正四棱柱形玻璃容器和正四棱台形玻璃容器的高均为32cm,容器的底面对角线AC的长为10cm,容器的两底面对角线,的长分别为14cm和62cm. 分别在容器和容器中注入水,水深均为12cm. 现有一根玻璃棒l,其

16、长度为40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将放在容器中,的一端置于点A处,另一端置于侧棱上,求没入水中部分的长度; (2)将放在容器中,的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.(第18题)【答案】(1)16(2)20【解析】解:(1)由正棱柱的定义,平面,所以平面平面,.记玻璃棒的另一端落在上点处.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)(2)如图,O,O1是正棱台的两底面中心.由正棱台的定义,OO1平面 EFGH, 所以平面E1EGG1平面EFGH,O1OEG.同理,平面 E1EGG1平面E1F1G1H1,O1OE1G1.记玻璃棒

17、的另一端落在GG1上点N处.过G作GKE1G,K为垂足, 则GK =OO1=32. 因为EG = 14,E1G1= 62,所以KG1= ,从而. 设则.因为,所以.在中,由正弦定理可得,解得. 因为,所以.于是.记EN与水面的交点为P2,过 P2作P2Q2EG,Q2为垂足,则 P2Q2平面 EFGH,故P2Q2=12,从而 EP2=.答:玻璃棒l没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)【考点】正余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基

18、本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.19.(本小题满分16分) 对于给定的正整数,若数列满足 对任意正整数总成立,则称数列是“数列”. (1)证明:等差数列是“数列”; (2)若数列既是“数列”,又是“数列”,证明:是等差数列.【答案】(1)见解析(2)见解析当时,当时,.由知,所以数列是等差数列.【考点】等差数列定义及通项公式【名师点睛】证明为等差数列的方法:(1)用定义证明:为常数);(2)用等差中项证明:;(3)通项法: 为的一次函数;(4)前项和

19、法: 20.(本小题满分16分) 已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于 的函数关系式,并写出定义域; (2)证明:; (3)若,这两个函数的所有极值之和不小于,求的取值范围.【答案】(1)(2)见解析(3)【解析】解:(1)由,得.当时,有极小值.因为的极值点是的零点.所以,又,故.因为有极值,故有实根,从而,即.时,故在R上是增函数,没有极值;时,有两个相异的实根,.列表如下x+00+极大值极小值故的极值点是.从而,因为,所以,故,即.因此.(3)由(1)知,的极值点是,且,.从而因此a的取值范围为.【考点】利用导数研究函数单调性

20、、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.$来&源:数学II21【选做题】本题包括、四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分解答时应写出文字说明、证明过程或演算步骤A. 选修41:几何证明选讲(本小题满分10分) 如图,AB为半圆O的直径,直线PC切半圆O于点C,APPC,P为垂足. 求证:(1) (2).(第21-A题)【

21、答案】见解析【解析】证明:(1)因为切半圆O于点C,所以,所以【考点】圆性质,相似三角形【名师点睛】1.解决与圆有关的成比例线段问题的两种思路(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相似三角形比例式等积式”在证明中有时还要借助中间比来代换,解题时应灵活把握2应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等B. 选修42:矩阵与变换(本小题满分10分) 已知矩阵 A= ,B=. (1)求; (2)若曲线在矩阵对应的变换作用下得到另一曲线,求的

22、方程.【答案】(1)(2)【解析】解:(1)因为A=, B=,所以AB=.(2)设为曲线上的任意一点,它在矩阵AB对应的变换作用下变为,则,即,所以.因为在曲线上,所以,从而,即.因此曲线在矩阵AB对应的变换作用下得到曲线.【考点】矩阵乘法、线性变换【名师点睛】(1)矩阵乘法注意对应相乘:(2)矩阵变换注意变化前后对应点:表示点在矩阵变换下变成点C. 选修4-4:坐标系与参数方程(本小题满分10分)$来&源: 在平面坐标系中中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值.【答案】【解析】解:直线的普通方程为.因此当点的坐标为时,曲线上

23、点到直线的距离取到最小值.【考点】参数方程化普通方程【名师点睛】1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法 2把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x及y的取值范围的影响D.选修4-5:不等式选讲(本小题满分10分) 已知为实数,且证明【答案】见解析【考点】柯西不等式【名师点睛】柯西不等式的一般形式:设a1,a2,an,b1,b2,bn为实数,则(aaa)(bbb)(a1b1a2b2anbn)2,当且仅当bi0或存在一个数k,使aikbi(i1,2,n)时,等号成立.【必做题】第22、23题,每小题10分,计20分.请把答

24、案写在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤22.(本小题满分10分) 如图, 在平行六面体ABCD-A1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=, . (1)求异面直线A1B与AC1所成角的余弦值; (2)求二面角B-A1D-A的正弦值.中华.资*源%库 (第22题)【答案】(1)(2)【解析】解:在平面ABCD内,过点A作AEAD,交BC于点E.因此异面直线A1B与AC1所成角的余弦值为.(2)平面A1DA的一个法向量为.设为平面BA1D的一个法向量,又,则即不妨取x=3,则,因此二面角B-A1D-A的正弦值为.【考点】空间向量、异面直线所成

25、角及二面角【名师点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.23.(本小题满分10分) 已知一个口袋有个白球,个黑球(),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为的抽屉内,其中第次取出的球放入编号为的抽屉.123 (1)试求编号为2的抽屉内放的是黑球的概率; (2)随机变量表示最后一个取出的黑球所在抽屉编号的倒数,是的数学期望,证明:【答案】(1)(2)见解析【解析】解:(1)编号为2的抽屉内放的是

26、黑球的概率为: .(2)随机变量X的概率分布为: XP随机变量X的期望为:$来&源:.【考点】古典概型概率、随机变量及其分布、数学期望【名师点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.更多精品word总结,可以关注数海之旅公众号21读者QQ群228046175

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 历年真题
版权提示 | 免责声明

1,本文(2017年普通高等学校招生全国统一考试(江苏卷)数学试题解答版.doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|