2016年普通高等学校招生全国统一考试(山东卷)数学试题 (文科)解答版.doc

上传人(卖家):四川三人行教育 文档编号:2539476 上传时间:2022-05-02 格式:DOC 页数:21 大小:1.23MB
下载 相关 举报
2016年普通高等学校招生全国统一考试(山东卷)数学试题 (文科)解答版.doc_第1页
第1页 / 共21页
2016年普通高等学校招生全国统一考试(山东卷)数学试题 (文科)解答版.doc_第2页
第2页 / 共21页
2016年普通高等学校招生全国统一考试(山东卷)数学试题 (文科)解答版.doc_第3页
第3页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、绝密启用前本试卷分第卷和第卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效. 3. 第卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题

2、请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则=( )(A)(B)(C)(D)【答案】A【解析】试题分析:由已知,所以,选A.考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.(2)若复数,其中i为虚数单位,则 =( )(A)1+

3、i(B)1i(C)1+i(D)1i【答案】B考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60(C)120(D)

4、140【答案】D【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时的有,选D.考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.(4)若变量x,y满足则x2+y2的最大值是( )(A)4 (B)9 (C)10 (D)12【答案】C【解析】试题分析:画出可行域如图所示,点到原点距离最大,所以,选C.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函

5、数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.5. 一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A) (B) (C) (D)【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.(6)已知直线a,b分别在两个不同的平面,内,则“直线a和直线b相交”是“平面和平面相交”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件

6、【答案】A【解析】试题分析: “直线和直线相交”“平面和平面相交”,但 “平面和平面相交”“直线和直线相交”,所以“直线和直线相交”是“平面和平面相交”的充分不必要条件,故选A考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.(7)已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是( )(A)内切 (B)相交 (C)外切 (D)相离【答案】B【解析】试题分析:由()得(),所以圆的圆心为,

7、半径为,因为圆截直线所得线段的长度是,所以,解得,圆的圆心为,半径为,所以,因为,所以圆与圆相交,故选B考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.(8)中,角A,B,C的对边分别是a,b,c,已知,则A=( )(A) (B) (C) (D)【答案】C考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容

8、.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. (9) 已知函数f(x)的定义域为R.当x0时,f(x)=x3-1;当-1x1时,f(-x)= f(x);当x时,f(x+)=f(x).则f(6)= ( )(A)-2 (B)-1 (C)0 (D)2【答案】D【解析】试题分析:当时,所以当时,函数是周期为的周期函数,所以,又因为当时,所以,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概

9、念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.(10)若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是( )(A) (B) (C)(D)【答案】A【解析】试题分析:由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当时,有,所以在函数图象存在两点使条件成立,故A正确;函数的导数值均非负,不符合题意,故选A.考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函

10、数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.第II卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。(11)执行右边的程序框图,若输入n的值为3,则输出的S的值为_【答案】 考点:程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握,本题能较好的考查考生应用知识分析问

11、题解决问题的能力等.(12)观察下列等式:;照此规律,_【答案】 考点:合情推理与演绎推理【名师点睛】本题主要考查合情推理与演绎推理,本题以三角函数式为背景材料,突出了高考命题注重基础的原则.解答本题,关键在于分析类比等号两端数学式子的特征,找出共性、总结规律,降低难度.本题能较好的考查考生逻辑思维能力及归纳推理能力等.(13)已知向量若,则实数t的值为_【答案】 【解析】试题分析:,解得 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.(14)已

12、知双曲线E:=1(a0,b0)矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_【答案】 【解析】试题分析:依题意,不妨设,作出图象如下图所示则故离心率 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.(15)已知函数 其中,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是_.【答案】 【解析】试题分析:画出函数图象如下图所示:由图所示,要有三个不同

13、的根,需要红色部分图像在深蓝色图像的下方,即,解得考点:1.函数的图象与性质;2.函数与方程;3.分段函数【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.三、解答题:本大题共6小题,共75分(16)(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若,则奖励玩具一个;

14、 若,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】().()小亮获得水杯的概率大于获得饮料的概率.【解析】试题分析:用数对表示儿童参加活动先后记录的数,写出基本事件空间与点集一一对应.得到基本事件总数.()利用列举法,确定事件包含的基本事件,计算即得.()记“”为事件,“”为事件.确定事件包含的基本事件共有个, 事件包含的基本事件共有个,计算得到,比较即知.试题解析:用数对表示儿童参加活动先后记录的数,则基本事件空间与点集则事件包含的基本事件共有

15、个,即所以,则事件包含的基本事件共有个,即所以,因为所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.(17)(本小题满分12分)设 .(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【答案】()的单调递增区间是(或)()【解析】试题分析:()化简得 由即得 写出的单调递增区间()由平移后得进一步可得

16、试题解析:()由 由得 再把得到的图象向左平移个单位,得到的图象,即所以 考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.(18)(本小题满分12分)在如图所示的几何体中,D是AC的中点,EFDB.(I)已知AB=BC,AE=EC.求证:

17、ACFB;(II)已知G,H分别是EC和FB的中点.求证:GH平面ABC.【答案】()证明:见解析;()见解析.【解析】试题分析:()根据,知与确定一个平面,连接,得到,从而平面,证得.()设的中点为,连,在,中,由三角形中位线定理可得线线平行,证得平面平面,进一步得到平面.试题解析:()证明:因,所以与确定一个平面,连接,因为为的中点,所以;同理可得,又因为,所以平面,因为平面,。()设的中点为,连,在中,是的中点,所以,又,所以;在中,是的中点,所以,又,所以平面平面,因为平面,所以平面.考点:1.平行关系;2.垂直关系.【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立

18、体几何中的基本问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.本题能较好的考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.(19)(本小题满分12分)已知数列的前n项和,是等差数列,且.(I)求数列的通项公式; (II)令.求数列的前n项和. 【答案】();()试题解析:()由题意当时,当时,;所以;设数列的公差为,由,即,解之得,所以。()由()知,又,即,所以,以上两式两边相减得。所以考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”.【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比

19、数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等. (20) (本小题满分13分) 设f(x)=xlnxax2+(2a1)x,aR.()令g(x)=f(x),求g(x)的单调区间;()已知f(x)在x=1处取得极大值.求实数a的取值范围.【答案】()当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为. () .【解析】试题分析:()求导数 可得,从而,讨论当时

20、,当时的两种情况下导函数正负号,确定得到函数的单调区间. ()分以下情况讨论:当时,当时,当时,当时,综合即得.试题解析:()由 可得,则,当时,时,函数单调递增;当时,时,函数单调递增, 时,函数单调递减.所以当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为. ()由()知,.当时,单调递减.所以当时,单调递减.当时,单调递增.当时,即时,在(0,1)内单调递增,在 内单调递减,所以当时, 单调递减,不合题意.当时,即 ,当时,单调递增,当时,单调递减,所以在处取得极大值,合题意.综上可知,实数a的取值范围为.考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名

21、师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等. (21) (本小题满分14分)已知椭圆C:(ab0)的长轴长为4,焦距为2.(I)求椭圆C的方程;()过动点M(0,m)(m0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.(i)设直线PM、QM的斜率分别为k、k,证明为定值.(i

22、i)求直线AB的斜率的最小值.【答案】() .()(i)见解析;(ii)直线AB 的斜率的最小值为 .【解析】试题分析:()分别计算即得.()(i)设,利用对称点可得 得到直线PM的斜率,直线QM的斜率,即可证得.(ii)设,分别将直线PA的方程,直线QB的方程与椭圆方程联立,应用一元二次方程根与系数的关系得到、及用表示的式子,进一步应用基本不等式即得.所以 直线PM的斜率 ,直线QM的斜率.此时,所以为定值.(ii)设,直线PA的方程为,直线QB的方程为.联立 ,整理得.由可得 ,所以,同理.所以, ,考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.基本不等式.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到参数的解析式或方程是关键,易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分析问题解决问题的能力等. 更多精品word总结,可以关注数海之旅公众号21读者QQ群228046175

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 历年真题
版权提示 | 免责声明

1,本文(2016年普通高等学校招生全国统一考试(山东卷)数学试题 (文科)解答版.doc)为本站会员(四川三人行教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|