工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt

上传人(卖家):三亚风情 文档编号:2549831 上传时间:2022-05-03 格式:PPT 页数:78 大小:4.18MB
下载 相关 举报
工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt_第1页
第1页 / 共78页
工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt_第2页
第2页 / 共78页
工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt_第3页
第3页 / 共78页
工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt_第4页
第4页 / 共78页
工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt_第5页
第5页 / 共78页
点击查看更多>>
资源描述

1、xylqM xqlxqx( ) 222222qlqEIyxx 2346qlqEIyxxC 341224qlqEIyxxCxD000 xyxly时,时,CqlD 3240,xqlxyABqEIlxxl2464233()233(2)24qxylxxlEImax ABqlEI3244max25384lxqlyyEI xqlxyABxylPABM xP lx( )() EIyPxPl 22PEIyxPlxC 3262PPlEIyxxCxD00,0 xyy时,CD 0 xylPABxPxEIxl22()2(3 )6PxyxlEImax BPlEI223max3BPlyyEI xylPABxxyl2PAB

2、Cl2ACM xPx段:( ) 22PEIyx 24PEIyxC 312PEIyxCxD00 xy时,D 002lxy时,CPl 216xyl2PABCl2xPEIxl16422()22(43)48PxyxlEImax ABPlEI2163max248lxPlyyEI xyl2PABCl2xyaqABCxaaaDEMxqaxxa11110()()112222()2EIyqaxqEIyqaxxayaqABCxaaaDEqaqax1x2Mxqaxqxaaxa22222222()()()121212,xxayyyy时21112qaEIyxC得CCDD1212110,0 xy时得 D10222,0 x

3、ay时得 Cqa23116 11EIyqax2222()2qEIyqaxxa3111 116qaEIyxC xD232222()26qaqEIyxxaC34222222()624qaqEIyxxaC xD22111233222223111134322222(113)06 3()1126(11)06 4()44224qaaxxaEIqaxxaaaxaEIqaya xxxaEIqyaxxaa xaxaEI 13max10116AxqaEI 24max22198xaqayyEI Af2l2l02lx ( )M xP x EIyP x 212PEIyxC 3116PEIyxCx D2lxl( )M x

4、P x 2EIyP x 2222PEIyxC 32226PEIyxC xD xl 时,y=0, =02ClxC左C右左C右时,y=y,=232211,23CP lDP l 231153,1616CP lDP l 3231153()61616yPxPl xPlEI0 x 3316APlfEI CABf、Cf53844qlEIPlEI348mlEI216AqlEI324PlEI216mlEI3BqlEI324PlEI2166mlEIEIpafc331EIpac221223cBfaPalaEI23BPalEI 21cccfff21ccclm2xm1xl/ 3EImm12/( )EIyM x 2121

5、mmlm2xm1M 0Mm2m10y 45 (2 )384CqafEI PaaEI()2162 0Pqa56BPaEI 22maEI20mPa4445 (2 )50,38424CDqaqaffEIEI 434(2 )(2 )14833BqaqaaqafEIEIEI 342(2 )82483BDfqaaqafEIEI323(2)2(2)BPaPa afEIEI33BBCfaPafEI 3512PaEIBPaEIPa aEI22 22()234PaEI顺时针 332PaEI解:解:3364BCqaqaEIEI顺时针BqaaEIqaaEI22223216()312qaEI顺时针 445824BCqa

6、qafEIEIaP=qaP=qam=q /2ABqCBP=qaqABCaaaBqkqlEIqlEI8224222433378384qqakEI顺时针 4516768CqlqlfkEI qlk88qlB处反力=kEIa23 41332CqaqafkEI 342(2 )243CqaqafaEIEI 41283CCCqafffEIBqa处 反 力 =2()BPaaPaEIEI23()22BPaaPafEIEIP alE A33CPafEI32xBPaCfEIyCBBCCfll343PaPaEIEA0Bf 即R lEIqlEIB34380RqlB380A即M lEIqlEIA32403MqlA182解

7、:解:(1)变形协调条件为:变形协调条件为:DDABCDff即5633333PaEIR aEIR aEIDD54DRP(2)(3)自行完成!自行完成!PBACDRDD如何得到?如何得到?BBABBCff334833BBR aR aqaEIEIEI即316BRqa2L2L2L2LCRCDClf3()48CCRaPRLEAEI3348CA LRPA LI a140MPa15 0 0fL2L2L31430ZWcm432240ZIcm80.4qkg m2max48P Lq LM32(50 10 ) 10(80.4 9.8) 10483134.8 10 N m2L2LmaxmaxZMW36134.8 1

8、094.31430 10PaMPa140MPaPqCCCfff3454 83 8 4ZZP Lq LE IE I3349898(50 10 ) 105 (80.4 9.8) 1048 (200 10 ) (32240 10 )384 (200 10 ) (32240 10 )317.76 1017.76mmm1500fL1020500mmmCf f设:开关闭合其状态为设:开关闭合其状态为“1”,断开为断开为“0”灯亮状态为灯亮状态为“1”,灯灭为,灯灭为“0” 0 0 0 0 C 0 0 1 10 1 0 10 1 1 01 0 0 11 0 1 01 1 0 01 1 1 156例例1:化简

9、化简CABCBACBAABCY)()(BBCABBACCAAC 例例2: 化化简简CBCAABY)(AACBCAABCBACACABABCAAB例例3: 化简化简CBACBAABCYABCCBACBAABCACBC CBCBA)(CBACBAY例例4: 化简化简BABAACBCBACBABAAB例例5:化简化简DBCDCBADABABCYDBABCDCBAABCDBCDCBAABDBCDCBAB)(DCBCDABCDBCDAB)(DADBCDCBAABCBCDABCDB58ABC001001 11 101111ABCCABCBABCAY用卡诺图表示并化简。用卡诺图表示并化简。解:解:1.卡诺图

10、卡诺图2.合并最小项合并最小项3.写出最简写出最简“与或与或”逻辑式逻辑式59ABC001001 11 101111解:解:三个圈最小项分别为:三个圈最小项分别为:合并最小项合并最小项ABCCBAABCBCACABABC BCACABABACBCY6000ABC1001 11 101111解:解:CACBYAB0001 11 10CD000111101111DBY CBABCACBACBAY(1)(2)DCBADCBADCBADCBAY61解:解:DBAYAB0001 11 10CD000111101DBDBCBAAY11111111162Y = Y2 Y3= A AB B AB.A B.A

11、B.A. .A BBY1.AB&YY3Y2.63反演律反演律反演律反演律64ABY001 100111001=A B65.A B.Y = AB AB .AB.BAYA B = AB +AB66=A B =1ABY逻辑符号逻辑符号=A BABY001 10010011167Y&1.BA&C101AA=AC +BCY=AC BC 设:设:C=1封锁封锁打开打开选通选通A信号信号68Y&1.BA&C011设:设:C=0选通选通B信号信号B=AC +BCY=AC BC69 开工为开工为“1”,不开工为,不开工为“0”; G1和和 G2运行为运行为“1”,不运行为,不运行为“0”。700111 0 0

12、1 0 100011 0 11 0 10 0 1 0 1 0 0 1 1 1 0 0 1 1 01 1 10 0 0A B C G1 G271ABCCABCBABCA1 GABCCBACBACBA2 GABC001001 11 101111ACBCAB1 G1 0 10 0 1 0 1 0 0 1 1 1 0 0 1 1 01 1 10 0 00111 0 0 1 0A B C G1 G2 100011 0 172ACBCAB1 GACBCAB ABCCBACBACBA2 GABCCBACBACBA2 G ABC0010011110111173A BCA BC&G1G274 750 0 01 0 0I0I1I2I3I5I6I输入输入输输 出出Y2 Y1 Y076Y2 = I4 + I5 + I6 +I7 = I4 I5 I6 I7.= I4+ I5+ I6+ I7Y1 = I2+I3+I6+I7 = I2 I3 I6 I7. . .= I2 + I3 + I6+ I7Y0 = I1+ I3+ I5+ I7 = I1 I3 I5 I7.= I1 + I3+ I5 + I77710000000111I7I6I5I4I3I1I2Y2Y1Y078

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(工程力学-材料力学第七章-梁弯曲时位移计算与刚度设计经典例题及详解课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|