1、第七章第七章 电容元件和电感元件电容元件和电感元件 前几章讨论了电阻电路,即由独立电源和电阻、受控前几章讨论了电阻电路,即由独立电源和电阻、受控源、理想变压器等电阻元件构成的电路。描述这类电路电源、理想变压器等电阻元件构成的电路。描述这类电路电压电流约束关系的电路方程是代数方程。但在实际电路的压电流约束关系的电路方程是代数方程。但在实际电路的分析中,往往还需要采用电容元件和电感元件去建立电路分析中,往往还需要采用电容元件和电感元件去建立电路模型。这些元件的电压电流关系涉及到电压电流对时间的模型。这些元件的电压电流关系涉及到电压电流对时间的微分或积分,称为动态元件。含动态元件的电路称为动态微分或
2、积分,称为动态元件。含动态元件的电路称为动态电路,描述动态电路的方程是微分方程。本章先介绍两种电路,描述动态电路的方程是微分方程。本章先介绍两种储能元件储能元件电容元件和电感元件。再介绍简单动态电路微电容元件和电感元件。再介绍简单动态电路微分方程的建立。以后两章讨论一阶电路和二阶电路的时域分方程的建立。以后两章讨论一阶电路和二阶电路的时域分析,最后一章讨论线性时不变动态电路的频域分析。分析,最后一章讨论线性时不变动态电路的频域分析。 1ppt课件 常用的几种电容器2ppt课件71 电容元件电容元件 一、一、 电容元件电容元件 集总参数电路中与电场有关的物理过程集中在电容元集总参数电路中与电场有
3、关的物理过程集中在电容元件中进行,电容元件是构成各种电容器的电路模型所必需件中进行,电容元件是构成各种电容器的电路模型所必需的一种理想电路元件。的一种理想电路元件。 电容元件的定义是:如果一个二端元件在任一时刻,电容元件的定义是:如果一个二端元件在任一时刻,其电荷与电压之间的关系由其电荷与电压之间的关系由u-q平面上一条曲线所确定,则平面上一条曲线所确定,则称此二端元件为电容元件。称此二端元件为电容元件。图图7-13ppt课件 (a) 电容元件的符号电容元件的符号 (c) 线性时不变电容元件的符号线性时不变电容元件的符号 (b) 电容元件的特性曲线电容元件的特性曲线 (d) 线性时不变电容元件
4、的特性曲线线性时不变电容元件的特性曲线 电容元件的符号和特性曲线如图电容元件的符号和特性曲线如图7-1(a)和和(b)所示。所示。 其特性曲线是通过坐标原点一条直线的电容元件称为其特性曲线是通过坐标原点一条直线的电容元件称为线性电容元件,否则称为非线性电容元件。线性电容元件,否则称为非线性电容元件。图图7-14ppt课件 线性时不变电容元件的符号与特性曲线如图线性时不变电容元件的符号与特性曲线如图(c)和和(d)所所示,它的特性曲线是一条通过原点不随时间变化的直线,示,它的特性曲线是一条通过原点不随时间变化的直线,其数学表达式为其数学表达式为 ) 17( Cuq 式中的系数式中的系数C为常量,
5、与直线的斜率成正比,称为电为常量,与直线的斜率成正比,称为电容,单位是法容,单位是法拉拉,用用F表示。表示。图图7-15ppt课件 实际电路中使用的电容器类型很多,电容的范围变化实际电路中使用的电容器类型很多,电容的范围变化很大,大多数电容器漏电很小,在工作电压低的情况下,很大,大多数电容器漏电很小,在工作电压低的情况下,可以用一个电容作为它的电路模型。当其漏电不能忽略时,可以用一个电容作为它的电路模型。当其漏电不能忽略时,则需要用一个电阻与电容的并联作为它的电路模型。则需要用一个电阻与电容的并联作为它的电路模型。 在工作频率很高的情况下,还需要增加一个电感来构在工作频率很高的情况下,还需要增
6、加一个电感来构成电容器的电路模型,如图成电容器的电路模型,如图7-2所示。所示。 图图7-2 电容器的几种电路模型电容器的几种电路模型 6ppt课件 二、电容元件的电压电流关系二、电容元件的电压电流关系 对于线性时不变电容元件来说,在采用电压电流关联对于线性时不变电容元件来说,在采用电压电流关联参考方向的情况下,可以得到以下关系式参考方向的情况下,可以得到以下关系式)27(ddd)(ddd)( tuCtCutqti 此式表明电容中的电流与其电压对时间的变化率成正此式表明电容中的电流与其电压对时间的变化率成正比,它与电阻元件的电压电流之间存在确定的约束关系不比,它与电阻元件的电压电流之间存在确定
7、的约束关系不同,电容电流与此时刻电压的数值之间并没有确定的约束同,电容电流与此时刻电压的数值之间并没有确定的约束关系。关系。 在直流电源激励的电路模型中,当各电压电流均不随在直流电源激励的电路模型中,当各电压电流均不随时间变化的情况下,电容元件相当于一个开路时间变化的情况下,电容元件相当于一个开路(i=0)。 7ppt课件 在已知电容电压在已知电容电压u(t)的条件下,用式的条件下,用式(6-2)容易求出其电流容易求出其电流i(t)。例如已知。例如已知C=1 F电容上的电压为电容上的电压为u(t)=10sin(5t)V,其波,其波形如图形如图7-3(a)所示,与电压参考方向关联的电容电流为所示
8、,与电压参考方向关联的电容电流为 A)5cos(50 A)5cos(1050 d)5sin(10d10 dd)(66 tttttuCti 图图7-3 8ppt课件在幻灯片放映时,请用鼠标单击图片放映录像。9ppt课件例例7-1 已知已知C=0.5 F电容上的电压波形如图电容上的电压波形如图7-4(a)所示,所示, 试求电压电流采用关联参考方向时的电流试求电压电流采用关联参考方向时的电流iC(t),并画并画 出波形图。出波形图。 图图74 例例71 10ppt课件A1=A101d)2(d105 . 0dd)(66CC tttuCti 2.当当1s t 3s时,时,uC(t)=4-2t,根据式,根
9、据式72可以得到可以得到 A1A101d)24(d105 . 0dd)(66CC tttuCti 1.当当0 t 1s 时,时,uC(t)=2t,根据式,根据式72可以得到可以得到解:根据图解:根据图74(a)波形,按照时间分段来进行计算波形,按照时间分段来进行计算图图74 例例71 11ppt课件 3.当当3s t 5s时,时,uC(t)=-8+2t,根据式,根据式72可以得到可以得到 A1A101d)28(d105 . 0dd)(66CC tttuCti 4.当当5s t时,时,uC(t)=12-2t,根据式,根据式72可以得到可以得到 A1A101d)212(d105 . 0dd)(66
10、CC tttuCti图图74 例例71 根据以上计算结果,画出图根据以上计算结果,画出图74(b)所示的矩形波形。所示的矩形波形。12ppt课件 在已知电容电流在已知电容电流iC(t)的条件下,其电压的条件下,其电压uC(t)为为 ) 37( d)(1) 0(d)(1d)(1d)(1)( 0 CC0 0 CC CC tttiCuiCiCiCtu 其中其中 0 CCd)(1)0( iCu称为电容电压的初始值称为电容电压的初始值, ,它是从它是从t t=-=-到到t t=0=0时间范围内流过时间范围内流过电容的电流在电容上积累电荷所产生的电压。电容的电流在电容上积累电荷所产生的电压。 13ppt课
11、件 式式(73)表示表示t0某时刻电容电压某时刻电容电压uc(t)等于电容电压的等于电容电压的初始值初始值uc(0)加上加上t=0到到t时刻范围内电容电流在电容上积累时刻范围内电容电流在电容上积累电荷所产生电压之和,就端口特性而言,等效为一个直流电荷所产生电压之和,就端口特性而言,等效为一个直流电压源电压源uc(0)和一个初始电压为零的电容的串联和一个初始电压为零的电容的串联 如图如图75所所示。示。) 37( d)(1) 0(d)(1d)(1d)(1)( 0 CC0 0 CC CC tttiCuiCiCiCtu 图图7514ppt课件 从上式可以看出电容具有两个基本的性质从上式可以看出电容具
12、有两个基本的性质 (1)电容电压的记忆性。电容电压的记忆性。 从式(从式(73)可见,任意时刻)可见,任意时刻T电容电压的数值电容电压的数值uC(T),要由从要由从- 到时刻到时刻T之间的全部电流之间的全部电流iC(t)来确定。也就是说,来确定。也就是说,此时刻以前流过电容的任何电流对时刻此时刻以前流过电容的任何电流对时刻T 的电压都有一定的电压都有一定的贡献。这与电阻元件的电压或电流仅仅取决于此时刻的的贡献。这与电阻元件的电压或电流仅仅取决于此时刻的电流或电压完全不同,我们说电容是一种记忆元件。电流或电压完全不同,我们说电容是一种记忆元件。 ) 37( d)(1) 0(d)(1d)(1d)(
13、1)( 0 CC0 0 CC CC tttiCuiCiCiCtu 15ppt课件例例72 电路如图电路如图76(a)所示,已知电容电流波形如图所示,已知电容电流波形如图76(b)所示,试求电容电压所示,试求电容电压uC(t),并画波形图。,并画波形图。 图图7-616ppt课件解:根据图解:根据图(b)波形的情况,按照时间分段来进行计算波形的情况,按照时间分段来进行计算 1当当t 0时,时,iC(t)=0,根据式,根据式7-3可以得到可以得到 ttiCtu 6 CC0d0102d)(1)( 2当当0 t1s时,时,iC(t)=1 A,根据式,根据式7-3可以得到可以得到 V2) s1( s1
14、220d10102)0(d)(1)(C 0 66C CC utttuiCtutt时时当当 图图7-617ppt课件 3当当1s t3s时,时,iC(t)=0,根据式,根据式73可以得到可以得到 V2) s3( s3 2V=0+V2d0102)1(d)(1)(C 1 6C CC utuiCtutt时时当当 4当当3s t5s时,时,iC(t)=1 A,根据式,根据式73可以得到可以得到 6V=4V+V2) s5( s5 3)2(+2d10102)3(d)(1)(C 3 66C CC uttuiCtutt时时当当 5当当5s t时,时,iC(t)=0,根据式,根据式73可以得到可以得到 6V0+V
15、6d0102)5(d)(1)( 5 6C CC ttuiCtu 18ppt课件 根据以上计算结果,可根据以上计算结果,可以画出电容电压的波形如图以画出电容电压的波形如图(c)所示,由此可见任意时刻电所示,由此可见任意时刻电容电压的数值与此时刻以前容电压的数值与此时刻以前的全部电容电流均有关系。的全部电容电流均有关系。 例如,当例如,当1st3s时,电时,电容电流容电流iC(t)=0,但是电容电压,但是电容电压并不等于零,电容上的并不等于零,电容上的2V电电压是压是0t1s时间内电流作用的时间内电流作用的结果。结果。 图图7-619ppt课件 图图77(a)所示的峰值检波器电路,就是利用电容的记
16、所示的峰值检波器电路,就是利用电容的记忆性,使输出电压波形忆性,使输出电压波形如图如图(b)中实线所示中实线所示保持输入电压保持输入电压uin(t)波形波形如图如图(b)中虚线所示中虚线所示中的峰值。中的峰值。 图图77 峰值检波器电路的输入输出波形峰值检波器电路的输入输出波形 20ppt课件 (2)电容电压的连续性电容电压的连续性 从例从例72的计算结果可以看出,电容电流的波形是不的计算结果可以看出,电容电流的波形是不连续的矩形波,而电容电压的波形是连续的。从这个平滑连续的矩形波,而电容电压的波形是连续的。从这个平滑的电容电压波形可以看出电容电压是连续的一般性质。即的电容电压波形可以看出电容
17、电压是连续的一般性质。即电容电流在闭区间电容电流在闭区间t1,t2有界时,电容电压在开区间有界时,电容电压在开区间(t1,t2)内内是连续的。这可以从电容电压、电流的积分关系式中得到是连续的。这可以从电容电压、电流的积分关系式中得到证明。证明。 将将t=T和和t=T+dt代入式代入式(63)中,其中中,其中t1Tt2和和t1T+dt0时,时,W(t)不可能为负值,电容不可能放出多于不可能为负值,电容不可能放出多于它储存的能量,这说明电容是一种储能元件。由于电容电它储存的能量,这说明电容是一种储能元件。由于电容电压确定了电容的储能状态,称电容电压为状态变量。压确定了电容的储能状态,称电容电压为状
18、态变量。 从式从式(75)也可以理解为什么电容电压不能轻易跃变,也可以理解为什么电容电压不能轻易跃变,这是因为电容电压的跃变要伴随电容储存能量的跃变,在这是因为电容电压的跃变要伴随电容储存能量的跃变,在电流有界的情况下,是不可能造成电场能量发生跃变和电电流有界的情况下,是不可能造成电场能量发生跃变和电容电压发生跃变的。容电压发生跃变的。 )57()( 21)(2C tuCtW28ppt课件 若电容的初始储能为零,即若电容的初始储能为零,即u(t0)=0,则任意时刻储存在则任意时刻储存在电容中的能量为电容中的能量为 )57()( 21)(2C tuCtW 此式说明某时刻电容的储能取决于该时刻电容
19、的电压此式说明某时刻电容的储能取决于该时刻电容的电压值,与电容的电流值无关。值,与电容的电流值无关。 电容电压的绝对值增大时,电容储能增加;电容电压电容电压的绝对值增大时,电容储能增加;电容电压的绝对值减小时,电容储能减少。的绝对值减小时,电容储能减少。29ppt课件 1. 1. 两个线性电容并联单口网络,就其端口特性而言,两个线性电容并联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:等效于一个线性电容,其等效电容的计算公式推导如下: tuCtuCCtuCtuCiiidddd)( dddd212121 四、电容的串联和并联四、电容的串联和并联图图710 列出图列
20、出图710(a) 的的KCL方程,代入电容的电压电流关方程,代入电容的电压电流关系,得到端口的电压电流关系系,得到端口的电压电流关系其中其中 6)(7 21 CCC30ppt课件 2. 两个线性电容串联单口网络,就其端口特性而言,等效两个线性电容串联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:于一个线性电容,其等效电容的计算公式推导如下: 列出图列出图711(a) 的的KVL方程,代入电容的电压电流关系,方程,代入电容的电压电流关系,得到端口的电压电流关系得到端口的电压电流关系图图711 tttdiCdiCdiCtututu )(1)(1)(1)()()(21
21、21其中其中 21111CCC 7)(7 2121CCCCC 由此求得由此求得 31ppt课件 名名 称称时间时间 名名 称称时间时间 1 1电容的电压电流波形电容的电压电流波形4:162 2电感的电压电流波形电感的电压电流波形2:413 3回转器变电容为电感回转器变电容为电感2:42 根据教学需要,用鼠标点击名称的方法放映相关录像。根据教学需要,用鼠标点击名称的方法放映相关录像。32ppt课件郁金香33ppt课件 常用的几种电感器常用的几种电感器72 电电感感元件元件34ppt课件 如果一个二端元件在任一时刻,其磁通链与电流之间的如果一个二端元件在任一时刻,其磁通链与电流之间的关系由关系由i
22、 平面上一条曲线所确定,则称此二端元件为电平面上一条曲线所确定,则称此二端元件为电感元件。电感元件的符号和特性曲线如图感元件。电感元件的符号和特性曲线如图712(a)和和(b)所所示。示。 (a) 电感元件的符号电感元件的符号 (c) 线性时不变电感元件的符号线性时不变电感元件的符号 (b) 电感元件的特性曲线电感元件的特性曲线 (d) 线性时不变电感的特性曲线线性时不变电感的特性曲线图图7-12一、一、 电感元件电感元件35ppt课件 其特性曲线是通过坐标原点一条直线的电感元件称为其特性曲线是通过坐标原点一条直线的电感元件称为线性电感元件,否则称为非线性电感元件。线性时不变电线性电感元件,否
23、则称为非线性电感元件。线性时不变电感元件的符号与特性曲线如图感元件的符号与特性曲线如图(c)和和(d)所示,它的特性曲线所示,它的特性曲线是一条通过原点不随时间变化的直线,其数学表达式为是一条通过原点不随时间变化的直线,其数学表达式为)97( Li 式中的系数式中的系数L为常量,与直线的斜率成正比,称为电为常量,与直线的斜率成正比,称为电感,单位是亨感,单位是亨利利,用用H表示。表示。图图7-1236ppt课件 实际电路中使用的电感线圈类型很多,电感的范围变实际电路中使用的电感线圈类型很多,电感的范围变化很大,例如高频电路中使用的线圈容量可以小到几个微化很大,例如高频电路中使用的线圈容量可以小
24、到几个微亨亨( H ,1 H=10-6H) ,低频滤波电路中使用扼流圈的电感可低频滤波电路中使用扼流圈的电感可以大到几亨。电感线圈可以用一个电感或一个电感与电阻以大到几亨。电感线圈可以用一个电感或一个电感与电阻的串联作为它的电路模型。在工作频率很高的情况下,还的串联作为它的电路模型。在工作频率很高的情况下,还需要增加一个电容来构成线圈的电路模型,如图需要增加一个电容来构成线圈的电路模型,如图713所示。所示。 图图913 电感器的几种电路模型电感器的几种电路模型 37ppt课件二、电感的电压电流关系二、电感的电压电流关系 对于线性时不变电感元件来说,在采用电压电流关联对于线性时不变电感元件来说
25、,在采用电压电流关联参考方向的情况下,可以得到参考方向的情况下,可以得到)107(ddd)(ddd)( tiLtLittu 此式表明电感中的电压与其电流对时间的变化率成正比,此式表明电感中的电压与其电流对时间的变化率成正比,与电阻元件的电压电流之间存在确定的约束关系不同,电感与电阻元件的电压电流之间存在确定的约束关系不同,电感电压与此时刻电流的数值之间并没有确定的约束关系。电压与此时刻电流的数值之间并没有确定的约束关系。 在直流电源激励的电路中,磁场不随时间变化在直流电源激励的电路中,磁场不随时间变化,各电压电各电压电流均不随时间变化时,电感相当于一个短路流均不随时间变化时,电感相当于一个短路
26、(u=0)。 38ppt课件 在已知电感电流在已知电感电流i(t)的条件下,用式的条件下,用式(710)容易求出其容易求出其电压电压u(t)。 例如例如L=1mH的电电感上,施加电流为的电电感上,施加电流为i(t)=10sin(5t)A时,时,其关联参考方向的电压为其关联参考方向的电压为 mV)5cos(50V)5cos(1050 d)5sin(10d10dd)(33tttttiLtu 电感电压的数值与电感电流的数值之间并无确定的关电感电压的数值与电感电流的数值之间并无确定的关系,例如将电感电流增加一个常量系,例如将电感电流增加一个常量k,变为,变为i(t)=k+10sin5tA时,电感电压不
27、会改变,这说明电感元件并不具有电阻元时,电感电压不会改变,这说明电感元件并不具有电阻元件在电压电流之间有确定关系的特性。件在电压电流之间有确定关系的特性。 39ppt课件例例75 电路如图电路如图714(a)所示,已知所示,已知L=5 H电感上的电流电感上的电流 波形如图波形如图714(b)所示,求电感电压所示,求电感电压u(t),并画出波形图。并画出波形图。图图714 例例7540ppt课件 2.当当0 t 3 s时,时,i(t)=2 103t,根据式,根据式710可以得到可以得到 10mV=V1010d)102(d105dd)(336 tttiLtu解:根据图解:根据图615(b)波形,按
28、照时间分段来进行计算波形,按照时间分段来进行计算 1.当当t 0时,时,i(t)=0,根据式,根据式710可以得到可以得到 0d)0(d105dd)(6 ttiLtu图图714 例例7541ppt课件 3. 当当3 s t 4 s时,时, i(t)=24 103-6 103t,根据式,根据式710可以得到可以得到 mV30=V1030d)1061024(d105dd)(3336 tttiLtu 4. 当当4 s t 时,时,i(t)=0,根据式,根据式710可以得到可以得到 0d)0(d105dd)(6 ttiLtu图图714 例例7542ppt课件 根据以上计算结根据以上计算结果,画出相应的
29、波形,果,画出相应的波形,如图如图714(c)所示。所示。这说明电感电流为三这说明电感电流为三角波形时,其电感电角波形时,其电感电压为矩形波形。压为矩形波形。 图图71443ppt课件 在已知电感电压在已知电感电压uL(t)的条件下,其电流的条件下,其电流iL(t)为为 )117( d)(1)0(d)(1d)(1d)(1)( 0 LL0 0 LL LL tttuLiuLuLuLti 其中其中 0 LLd)(1)0( uLi称为电感电压的初始值称为电感电压的初始值, ,它是从它是从t t=-=-到到t t=0=0时间范围内电感电时间范围内电感电压作用于电感所产生的电流。压作用于电感所产生的电流。
30、 44ppt课件式式(711)表示表示t0的某时刻电感电流的某时刻电感电流iL(t)等于电感电流的初始等于电感电流的初始值值iL(0)加上加上t=0到到t时刻范围内电感电压在电感中所产生电流时刻范围内电感电压在电感中所产生电流之和,就端口特性而言,等效为一个直流电流源之和,就端口特性而言,等效为一个直流电流源iL(0)和一个和一个初始电流为零的电感的并联,如图初始电流为零的电感的并联,如图715所示。所示。)117( d)(1)0(d)(1)( 0 LL LL ttuLiuLti 图图71545ppt课件 从式从式(711)可以看出电感具有两个基本的性质。可以看出电感具有两个基本的性质。 (1
31、)电感电流的记忆性。电感电流的记忆性。 从式(从式(68)可见,任意时刻)可见,任意时刻T电感电流的数值电感电流的数值iL(T),要由从要由从- 到时刻到时刻T 之间的全部电压来确定。之间的全部电压来确定。 也就是说,此时刻以前在电感上的任何电压对时刻也就是说,此时刻以前在电感上的任何电压对时刻T的电感电流都有一份贡献。这与电阻元件的电压或电流仅的电感电流都有一份贡献。这与电阻元件的电压或电流仅取决于此时刻的电流或电压完全不同,我们说电感是一种取决于此时刻的电流或电压完全不同,我们说电感是一种记忆元件。记忆元件。)117( d)(1)0(d)(1)( 0 LL LL ttuLiuLti 46p
32、pt课件例例76电路如图电路如图716(a)所示,电感电压波形如图所示,电感电压波形如图716(b)所所示,试求电感电流示,试求电感电流i(t),并画波形图。并画波形图。图图71647ppt课件解:根据图解:根据图(b)波形,按照时间分段来进行积分运算波形,按照时间分段来进行积分运算 1.当当t0时,时,u(t)=0,根据式,根据式711可以得到可以得到 ttuLti 3 L0Ad0102d)(1)( 2.当当0t1s时,时,u(t)=1mV,根据式,根据式711可以得到可以得到 A2) s1( s1 A220d10102)0(d)(1)(L 0 33L L itttAiuLtitt时时当当
33、图图71648ppt课件 3.当当1st2s时,时,u(t)=-1mV,根据式,根据式711可以得到可以得到 4.当当2st3s时,时,u(t)=1mV,根据式,根据式711可以得到可以得到 A0) s2( s2 A)1(2A2d10102)1(d)(1)(L 1 33L L ittiuLtitt时时当当 A2) s3( s3 A)2(20d10102)2(d)(1)(L 2 33L L ittiuLtitt时时当当 5.当当3st0时,电感吸收功率;当时,电感吸收功率;当p0时,电感发出功率。时,电感发出功率。56ppt课件 电感在从初始时刻电感在从初始时刻t0到任意时刻到任意时刻t时间内得
34、到的能量为时间内得到的能量为 )( )( 022 0000)()(21 )()()(),(tititttttitiLidiLdddiiLdpttW 若电感的初始储能为零,即若电感的初始储能为零,即i(t0)=0,则任意时刻储存在则任意时刻储存在电感中的能量为电感中的能量为 )137()(21)(2L tLitW57ppt课件 此式说明某时刻电感的储能取决于该时刻电感的电流此式说明某时刻电感的储能取决于该时刻电感的电流值,与电感的电压值无关。电感电流的绝对值增大时,电值,与电感的电压值无关。电感电流的绝对值增大时,电感储能增加;电感电流的绝对值减小时,电感储能减少。感储能增加;电感电流的绝对值减
35、小时,电感储能减少。 由于电感电流确定了电感的储能状态,称电感电流为由于电感电流确定了电感的储能状态,称电感电流为状态变量。状态变量。 从式从式(713)也可以理解为什么电感电流不能轻易跃变,也可以理解为什么电感电流不能轻易跃变,这是因为电感电流的跃变要伴随电感储存能量的跃变,在这是因为电感电流的跃变要伴随电感储存能量的跃变,在电压有界的情况下,是不可能造成磁场能量发生突变和电电压有界的情况下,是不可能造成磁场能量发生突变和电感电流发生跃变的。感电流发生跃变的。58ppt课件四、电感的串联和并联四、电感的串联和并联 1. 两个线性电感串联单口网络,就其端口特性而言,等效两个线性电感串联单口网络
36、,就其端口特性而言,等效于一个线性电感,其等效电感的计算公式推导如下:于一个线性电感,其等效电感的计算公式推导如下: tiLtiLLtiLtiLuuudddd)( dddd212121 其中其中 )147( 21 LLL 列出图列出图718(a)的的KVL方程,代入电感的电压电流关系,方程,代入电感的电压电流关系,得到端口电压电流关系得到端口电压电流关系图图71859ppt课件 2. 两个线性电感并联单口网络,就其端口特性而言,等效两个线性电感并联单口网络,就其端口特性而言,等效于一个线性电感,其等效电感的计算公式推导如下:于一个线性电感,其等效电感的计算公式推导如下: 其中其中 列出图列出图
37、719(a)单口网络的单口网络的KCL方程,代入电感的电压方程,代入电感的电压电流关系,得到端口的电压电流关系电流关系,得到端口的电压电流关系图图719 tttduLduLduLtititi )(1)(1)(1)()()(212121111LLL )157( 2121 LLLLL由此求得由此求得 60ppt课件Li ttuLiuLti 0 LL LLd)(1)0(d)(1)( )0()0(LL ii)(21)(2LtLitW Cuq tuCtqtidddd)( ttiCuiCtu 0 CC CCd)(1)0( d)(1)( )0()0(CC uu)( 21)(2CtuCtW tiLttuddd
38、d)( 61ppt课件二端电阻,二端电容和二端电感是三种最基本的电路元件。二端电阻,二端电容和二端电感是三种最基本的电路元件。它们是用两个电路变量之间的关系来定义的。这些关系从下它们是用两个电路变量之间的关系来定义的。这些关系从下图可以清楚看到。在四个基本变量间定义的另外两个关系是图可以清楚看到。在四个基本变量间定义的另外两个关系是tttuttqtid)(d)(d)(d)( 四个基本电路变量之间的关系四个基本电路变量之间的关系 62ppt课件 亨利亨利是一个美国物理学家,他发明了电感是一个美国物理学家,他发明了电感和制造了电动机。和制造了电动机。 他比他比法拉第法拉第先发现电磁感应现象,电感的
39、先发现电磁感应现象,电感的单位是用他的名字命名的。单位是用他的名字命名的。 63ppt课件 Michael Faraday (17911867)法拉第是英国化学家和物理学家,1931年发现的电磁感应定律是工程上的一个主要突破。 法拉第法拉第是一个英国化学家和物理学家,他是一个是一个英国化学家和物理学家,他是一个最伟大的实验家。最伟大的实验家。 他在他在1931年发现的电磁感应是工程上的一个重要突年发现的电磁感应是工程上的一个重要突破,电磁感应提供了产生电的一种方法。电磁感应是破,电磁感应提供了产生电的一种方法。电磁感应是电动机和发电机的工作原理。电容的单位电动机和发电机的工作原理。电容的单位(
40、farad)用他用他的名字命名是他的荣誉。的名字命名是他的荣誉。 64ppt课件 名名 称称时间时间 名名 称称时间时间 1 1电容的电压电流波形电容的电压电流波形4:162 2电感的电压电流波形电感的电压电流波形2:413 3回转器变电容为电感回转器变电容为电感2:42 根据教学需要,用鼠标点击名称的方法放映相关录像。根据教学需要,用鼠标点击名称的方法放映相关录像。65ppt课件郁金香66ppt课件73 动态电路的电路方程动态电路的电路方程 含有储能元件的动态电路中的电压电流仍然含有储能元件的动态电路中的电压电流仍然受到受到KCL、KVL的拓扑约束和元件特性的拓扑约束和元件特性VCR的约的约
41、束。一般来说,根据束。一般来说,根据KCL、KVL和和VCR写出的电写出的电路方程是一组微分方程。路方程是一组微分方程。 由一阶微分方程描述的电路称为一阶电路。由一阶微分方程描述的电路称为一阶电路。 由二阶微分方程描述的电路称为二阶电路。由二阶微分方程描述的电路称为二阶电路。 由由n阶微分方程描述的电路称为阶微分方程描述的电路称为n阶电路。阶电路。67ppt课件例例78 列出图列出图720所示电路的一阶微分方程。所示电路的一阶微分方程。 图图7-2068ppt课件 得到得到 )177()()(d)(dSCCtututtuRC 这是常系数非齐次一阶微分方程,图这是常系数非齐次一阶微分方程,图(a
42、)是一阶电路。是一阶电路。 在上式中代入在上式中代入:ttuCtid)(d)(C )()()()()(CCRStutRitututu 解:对于图解:对于图(a)所示所示RC串联电路,可以写出以下方程串联电路,可以写出以下方程 图图7-2069ppt课件 对于图对于图(b)所示所示RL并联电路,可以写出以下方程并联电路,可以写出以下方程 )()()()()(LLLRStitGutititi 在上式中代入在上式中代入 :ttiLtud)(d)(LL 得到得到)187()()(d)(dSLL titittiGL 这是常系数非齐次一阶微分方程。图这是常系数非齐次一阶微分方程。图(b)是一阶电路。是一阶
43、电路。 图图7-2070ppt课件例例7-9 电路如图电路如图721(a)所示,以所示,以iL为变量列出电路的微分为变量列出电路的微分 方程。方程。 图图7-2171ppt课件解一:列出网孔方程解一:列出网孔方程 (2) 0dd(1) )(L2L12SL2121iRtiLiRuiRiRR 由式由式(2)求得求得 LL21dditiRLi 代入式代入式(1)得到得到 SL2L21L221)(dd)(uiRiRRtiRLRR 整理整理)197(dd)(SL1L221 uiRtiRLRR72ppt课件解二:将含源电阻单口用诺顿等效电路代替,得到图解二:将含源电阻单口用诺顿等效电路代替,得到图(b)电
44、电 路,其中路,其中1SSC2121o RuiRRRRR 图图7-2173ppt课件 图图721(b)电路与图电路与图720(b)电路完全相同,直接引用电路完全相同,直接引用式式718可以得到可以得到 1SL2121dd)(RuitiRRLRRL 此方程与式此方程与式719相同,这是常系数非齐次一阶微分方相同,这是常系数非齐次一阶微分方程,图程,图(a)是一阶电路。是一阶电路。 图图7-2174ppt课件例例7-10 电路如图电路如图7-22(a)所示,以所示,以uC(t)为变量列出电路的微为变量列出电路的微 分方程。分方程。 解一:列出网孔方程解一:列出网孔方程 0)()(CC3212SC2
45、121uiRRiRuiRiRR图图7-2275ppt课件 补充方程补充方程 tuCiddCC 得到以得到以i1(t)和和uC(t)为变量的方程为变量的方程 (2) 0dd)(1) dd)(CC3212SC2121utuCRRiRutuCRiRR 0)()(CC3212SC2121uiRRiRuiRiRR76ppt课件 将将 i1(t)代入式代入式(1),得到以下方程,得到以下方程 )207(dd)(S212CC21213 uRRRutuCRRRRR 这是以电容电压为变量的一阶微分方程。这是以电容电压为变量的一阶微分方程。 从式从式(2)中写出中写出i1(t)的表达式的表达式 C2C23211d
46、d)(uRtuRCRRi 图图7-2277ppt课件解二:将连接电容的含源电阻单口网络用戴维宁等效电路解二:将连接电容的含源电阻单口网络用戴维宁等效电路 代替,得到图代替,得到图(b)所示电路,其中所示电路,其中 S212oc21213ouRRRuRRRRRR 图图722(b)电路与图电路与图720(a)相同,直接引用式相同,直接引用式717可以可以所得到与式所得到与式720相同的的微分方程。相同的的微分方程。 图图7-2278ppt课件例例7-11 电路如图电路如图7-23所示,以所示,以uC(t)为变量列出电路的微分为变量列出电路的微分 方程。方程。 解:以解:以iL(t)和和iC(t)为
47、网孔电流,列出网孔方程为网孔电流,列出网孔方程 0)(ddCC1L1SC1L21LuiRiRuiRiRRtiL图图7-2379ppt课件 0)(ddCC1L1SC1L21LuiRiRuiRiRRtiL 代入电容的代入电容的VCR方程方程 tuCiddCC 得到以得到以iL(t)和和uC(t)为变量的方程为变量的方程 )2( 0dd)1( dd)(ddCC1L1SC1L21LutuCRiRutuCRiRRtiL80ppt课件 从式从式(2)得到得到 C1CL1dduRtuCi 将将iL(t)代入式代入式(1)中中SC1C121C21C12C2dd)(dd)(ddddutuCRuRRRtuCRRt
48、uRLtuLC 经过整理得到以下微分方程经过整理得到以下微分方程 SC121C212C2)(dd)(dduuRRRtuCRRLtuLC 这是常系数非齐次二阶微分方程,图示电路是二阶电路。这是常系数非齐次二阶微分方程,图示电路是二阶电路。 图图7-2381ppt课件 L7-11s Circuit Data 元件 支路 开始 终止 控制 元 件 元 件 类型 编号 结点 结点 支路 符 号 符 号 V 1 1 0 Us L 2 1 2 L R 3 2 3 R1 C 4 2 3 C R 5 3 0 R2 独立结点数目 = 3 支路数目 = 5 - 结 点 电 压 , 支 路 电 压 和 支 路 电
49、流 - R1Us U4 (S)= - R1SCSL+SL+R1R2SC+R2+R1 R1SCUs+Us I2 (S)= - R1SCSL+SL+R1R2SC+R2+R1 * 符 号 网 络 分 析 程 序 ( SNAP 2.11 ) 成电 七系-胡翔骏 *)()()(d)(d)(d)(dS1C21C2122C1tuRtuRRttuCRRLttuLCR )(d)(d)()(d)(d)(d)(dSS1L21L2122L1tuttuCRtiRRttiCRRLttiLCR 82ppt课件 名名 称称时间时间 名名 称称时间时间 1 1电容的电压电流波形电容的电压电流波形4:162 2电感的电压电流波形
50、电感的电压电流波形2:413 3回转器变电容为电感回转器变电容为电感2:42 根据教学需要,用鼠标点击名称的方法放映相关录像。根据教学需要,用鼠标点击名称的方法放映相关录像。83ppt课件郁金香84ppt课件74 电路应用,电路实验和计算机分析电路实例电路应用,电路实验和计算机分析电路实例 首先证明端接电容器的回转器等效为一个电感,再介绍由两个运算放大器构成的回转器可以将一个0.2F电容变为0.2H的电感。然后介绍利用计算机程序来建立动态电路的微分方程。最后介绍用双踪示波器观察电容和电感电压电流波形的实验方法。 85ppt课件例713 证明图725所示单口网络等效为一个电感。 一、回转器的应用