1、目目 录录 一 编制依据2 二 工程概况3 三 工程特点分析10 四 施工总体安排11 五 工程质量目标12 六 施工工艺13 七 施工进度计划60 八 施工总平面布署62 九 现场组织机构及质量保证体系 63 十 质量保证体系 66 十一 安全保证措施 69 十二 主要施工材料使用计划 78 十三 施工船舶使用计划 79 十四 劳动力使用计划81 一一 编制依据编制依据 1 浙江舟山煤炭中转码头工程图纸 2 浙江舟山煤炭中转码头工程施工协议 3 采用规范、标准 3.1港口工程质量检验评定标准 JTJ221-98 3.2 港口设备安装工程质量检验评定标准 JTJ244-95 3.3 水运工程测
2、量规范 JTJ203-2001 3.4 港口工程地质勘察规范 JTJ240-97 3.5 港口工程地基规范 JTJ250-98 3.6 港口工程砼结构设计规范 JTJ267-98 3.7 水运工程砼施工规范 JTJ268-96 3.8 水运工程砼试验规范 JTJ270-98 3.9 水运工程砼质量控制标准 JTJ269-96 3.10 硅酸盐水泥、普通硅酸盐水泥 GB175-85 3.11 港口工程桩基规范 JTJ254-98 3.12 高桩码头设计与施工规范 JTJ291-98 4 国家和地区颁布的其它有关法规 二二 工程概况工程概况 1. 工程名称:浙江舟山煤炭中转码头工程(栈桥和施工码头
3、工程) 2. 工程地理位置 浙江舟山煤炭中转码头工程项目是以电煤储存、混配、中转为,为目前国内规模最大的 煤炭中转码头之一,位于浙江省舟山本岛南部的六横岛东北岸石柱头一侧,水陆交通方便。 3 工程规模、结构型式及主要尺度 根据发展需要, 码头设 15 万吨级、 5 万吨级煤炭卸船泊位各一个, 3.5 万吨级、 2 万吨级、 5000 吨级煤炭装船泊位各一个。设计年通过能力为 3000 万吨(装船、卸船各 1500 万吨) , 堆场容量为 310 万吨,陆域用地 114.57 公顷。 设计采用高桩梁板式结构型式,码头通过栈桥与陆域相连,前栈桥宽 15m长度 633m (含输煤通道及高架桥) ,T
4、1 转运楼平台为 25m 35.5m,面积 1600m2,高 18.5m,后栈桥 491m 26.5m,含输煤皮带机通道及高架桥,后栈桥由三部分组成:重件通道及弯桥 197m 8m,卸船皮带机通道及跨海堤高架桥 297m 9.5m,装船皮带机通道及跨海堤高架桥 208m 12m,施工码头平台 116m 17m,系缆墩 5.5m 5.5m,至主栈桥的重件联桥 96m 8m,防 护桩一座,重件码头、栈桥附属设施(钢轨、橡胶护舷、系船柱、钢爬梯等) 。 4、单位工程及分部分项工程的划分 单位工程名称 序号 分部工程 序号 分项工程 质量目标 1 桩基 1 引桥 PHC 桩沉桩 优良 2 码头 PHC
5、 桩沉桩 优良 3 墩台 PHC 桩沉桩 优良 4 钻孔灌注桩 优良 5 防撞钢管桩沉桩 优良 2 栈桥 1 现浇横梁 优良 2 *预制空心大板 优良 3 安装空心大板 优良 4 预制面板 优良 5 安装面板 优良 6 沉降缝 优良 7 橡胶支座安装 优良 8 现浇面层 优良 9 *现浇集粪池底板及构造梁 优良 10 护轮坎 优良 11 *钢电杆 优良 12 *铁栏杆 优良 13 *防洪堤防潮闸板 优良 3 码头上部结构 1 预制靠船构件 优良 2 预制纵梁 优良 3 预制水平撑 优良 4 预制面板 优良 5 预制边梁 优良 6 现浇横梁 优良 7 现浇纵梁 优良 8 现浇前后边梁 优良 9
6、安装靠船构件 优良 10 安装纵梁 优良 11 安装边梁 优良 12 安装面板 优良 13 安装水平撑 优良 14 现浇面层 优良 15 *沉降缝 优良 16 *集水井底板现浇 优良 17 现浇墩台 优良 4 码头设施 1 *快速脱缆装置安装 优良 2 钢便桥安装 优良 3 *钢电杆 优良 4 *铁栏杆 优良 6 系船柱 优良 8 护舷及悬梯安装 优良 9 护轮坎 优良 表中带“”者为主要分部、分项工程。 “*” 者为不参与质量评定项目。 5 主要工程量 编号 项目名称 桩长 构件 数量 单位 单 位 工程量 单位 总工程量 备注 1 桩基桩基 11 后栈桥基桩 1.1.1 1200 钻孔灌注
7、桩 38 13 根 42.98 m 558.7 47 15 根 53.16 m 797.34 49 37 根 55.42 m 2050.45 50 5 根 56.55 m 282.74 52 5 根 58.81 m 294.05 59 5 根 66.73 m3 333.64 1.2 栈桥重件通道 1.2.1 1200 灌注桩 44 2 根 34.54 m3 69.08 46 2 根 36.11 m3 72.22 47 2 根 36.90 m3 73.79 48 4 根 37.68 m3 150.72 51 4 根 40.04 m3 160.14 54 4 根 42.39 m3 169.56 1
8、.2.2 1200 灌注桩 53 6 根 41.61 m3 249.63 54 15 根 42.39 m3 635.85 52 4 根 40.82 m3 163.28 2 栈桥重件通道直线段栈桥重件通道直线段 2.1 底帽梁 DHL1 1 23.01 m3 23.01 底帽梁 DHL2 2 14.82 m3 29.64 底帽梁 DHL3 1 23.79 m3 23.7 底帽梁 DHL4 1 33.54 m3 33.54 2.2 横撑 HC11 1 0.72 m3 0.72 横撑 HC12 1 2.91 m3 2.91 横撑 HC13 1 4.80 m3 4.80 横撑 HC21 1 0.78
9、m3 0.78 横撑 HC22 1 2.31 m3 2.31 横撑 HC23 1 3.78 m3 3.78 横撑 HC31 1 0.24 m3 0.24 横撑 HC32 1 1.69 m3 1.69 横撑 HC33 1 3.35 m3 3.35 2.3 立柱 LZ1 4 2.29 m3 9.14 立柱 LZ2 3 1.7 m3 5.11 立柱 LZ3 3 2.11 m3 6.33 立柱 LZ4 4 2.68 m3 10.71 重件帽梁 ML1 1 40.40 m3 40.40 重件帽梁 ML1 , 1 58.37 m3 58.37 编号 项目名称 桩长 构件 数量 单位 单 位 工程量 单位
10、总工程量 备注 2.4 重件帽梁 ML2 1 20.91 m3 20.91 重件帽梁 ML2 , 1 21.31 m3 21.31 重件帽梁 ML3 2 16.19 m3 32.37 重件帽梁 ML4 3 14.28 m3 44.46 重件帽梁 ML5 1 22.82 m3 22.82 2.5 喇叭口撑梁 CL1 1 7.73 m3 7.73 喇叭口撑梁 CL2 1 5.99 m3 5.99 喇叭口撑梁 CL3 1 5.30 m3 5.30 2.6 13m 预应力中板 YKB1 30 7.48 m3 224.4 13m 预应力中板 YKB2 12 8.7 m3 104.4 2.7 空心面板 S
11、B1SB2 1 18.79 m3 18.79 空心面板 SB3SB6 1 28.93 m3 28.93 2.8 铺装层、沿口 1 115.94 m3 115.94 3 栈桥重件道弯桥段栈桥重件道弯桥段 3.1 底帽梁 DHL4 3 15.03 m3 45.08 3.2 横撑 HC4 2 1.92 m3 3.84 横撑 HC5 4 1.08 m3 4.32 3.3 重件帽梁 ML6 2 15.6 m3 31.2 重件帽梁 ML6 3 16.8 m3 50.39 重件帽梁 ML6 1 17.24 m3 17.24 重件帽梁 ML6 3 18.3 m3 55.03 重件帽梁 ML6 1 18.7 m
12、3 18.79 3.4 立柱 LZ5 6 1.7 m3 10.23 3.5 13m 预应力中板 YKB1 39 7.48 m3 291.72 13m 预应力中板 YKB2 10 8.7 m3 87.0 3.6 实心面板 SB5 4 6.48 m3 25.92 3.7 铺装层、沿口 1 136.58 m3 136.58 6 气象与水文气象与水文 61 1 气温条件气温条件 本地区主要气象特征如下: 多年极端最高气温 38.2(1971 年 8 月 20 日) 多年极端最低气温 6.5 (1967 年 1 月 16 日) 多年平均气温 16.2 多年最高月平均气温 26.8(8 月) 多年最低月平
13、均气温 5.8(1 月) 6.2.2 降水量降水量 多年年最大降水量 1768.3mm(1993 年) 多年年最小降水量 961.3mm(1996 年) 多年平均降水量 1261.1mm 多年最大日降水量 195.2mm(1994 年 10 月 11 日) 多年最大月降水量 431.8mm(1989 年 9 月) 累年平均日降水量 10mm(中雨)的天数为 41.5d 累年平均日降水量 25mm (大雨) 的天数为 13.8d 累年平均日降水量 50mm (暴雨) 的天数为 3.3d 6.3.3 风风 年平均风速 5.1m/s 最大风速 1925m/s 强风向 ESES 常风向 NWNNE 6
14、.46.4 雾雾 多年平均雾日数:38d 多年最多雾日数:52d 多年最少雾日数:21d 6 65 5 热带气旋热带气旋 热带气旋是影响工程区的主要灾害性天气系统,根据热带气旋资料统计表明,对工程区有 影响的热带气旋平均每年 3.19 个,主要集中在 79 月。 对工程影响严重的台风,对舟山海域影响严重的台风路径是在浙江中、南部登陆,然后 转向东北出海消亡或转向西北内陆消亡的台风,另一类是中心接近舟山群岛沿岸北上的海上 越过型台风。 6 6.4.4 潮汐及潮汐及径径流流 本工程海域于 2004 年 3 月、11 月和 2006 年 8 月进行了三次海流观测,码头前沿各点最大可 能流速为: 表层
15、:流速 98196cm/s,流向 123346 度 中层:流速 100180cm/s,流向 121343 度 底层:流速 94170cm/s,流向 125331 度 垂线平均:流速 90181cm/s,流向 119337 度 水水文文特征(特征(国家国家 85 高程基准高程基准) 设计高水位: 2.12m 设计低水位: -1.51m 极端高水位: 3.48m 极端低水位: 2.56m 7 7 工程工期工程工期 本工程工期为 2006 年 11 月2007 年 6 月共计 7 个公历月,要求施工码头桩基础工程于 2007 年 3 月 30 日前完成,栈桥桩基础、施工码头工程于 2006 年 6
16、月 15 日完工。 8 工程地质工程地质 浙江省交通规划设计院2006年6月 浙江舟山煤炭中转码头工程设计阶段工程地质勘查报告 中,根据地基土物理力学性质、埋藏条件、成因时代、岩性成分及其结构构造将地基土划分 为 10 个工程地质层组,并细分为 47 个工程地质层,各土层的埋藏及分布情况详见下表: 土层编号 土层名称 土层描述 埋深 层厚 21 淤泥 灰黄色,饱和,流塑上质均一 1.512.5 1.512. 5 22 淤泥质粘土 灰黄色,饱和,流塑,无层理,切面光滑 0.07.6 3.913.8 2-3 淤泥质粉质粘土 灰黄色,饱和,流塑,无层理,切面光滑 0.08.4 1.514.5 2-5
17、 粉质粘土 灰黄色,饱和,硬塑可塑,无理层 5.013.6 1.95.6 3-1 淤泥 灰色,饱和,流塑,无理层,切面光滑 3.05.6 1.9 5.6 3-2 淤泥质粘土 灰色饱和,流塑,具层理,土质较均一 2.315.0 1.811.2 3-3 淤泥质粉质粘土 灰色,饱和,流塑,具层理,土质均一, 切面较光滑 4.017.6 1.920.2 3-4 粘土 灰黄色,无理层含黄色粉质粘土团块。 12.1 3.9 3-5 粉质粘土 灰色,灰黄色,饱和,软塑可塑,切面 稍现光滑 6.421.9 1.58.8 3-5 粉土 灰色,饱和,切面较粗糙,见层理, 9.123. . - 淤泥质粘土 灰色,流
18、塑。薄层状,鳞片状双重构造。 6020.1 4.511.9 4-3 淤泥质粉质粘土 灰色,流塑,薄层状、鳞片状双重构造 11.917.9 5.812.7 4-5 粉质粘土 灰色、灰黄色,软塑可塑稍具层理 10.533.6 1.432.8 4-5 粘土 灰色,饱和,软可塑,薄层状为主 17.625.5 7.714.7 6-1 粉质粘土 灰绿,灰黄色可塑薄层状见薄层状粉砂 14.825.5 3.87.1 6-1 粘土 灰绿、灰黄色饱和,软可塑 9.864.7 0.327.9 6-2 粉质粘土 灰色,软可塑,薄层状, 9.864.7 0.327.9 6-2 粘土 灰色夹灰黄,灰绿色,饱和 13.34
19、4. 1.18. - 粉质粘土 灰色,饱和,软可塑,无层理 21.37. . 6-3 含粘性土圆砾 灰色夹灰黄色,饱和,厚层状,土质不均 8.462.4 m 0.64.6 6-4 贝壳层 灰黄灰色,湿,稍密中密 26.0 7.9 7-0 淤泥质粉质粘土 灰色,饱和,流塑,土质均一, 粘塑性一般 20.647.5 1.45.4 7-1 粉质粘土 灰绿,灰黄色间夹灰色,饱和,具层理 10.264.3 0.614.2 7-1 粘土 灰绿、灰黄间夹灰白色,饱和, 12.266.2 1.611.2 7-1” 粘质粉土 灰绿、灰黄色,饱和,可塑硬塑, 26.026.5 1.05.9 7-2 含粘性土砾砂
20、灰灰黄色,中密,厚层状,土质不均 33.663.5 0.43.9 7-2 粉质粘土 灰色,软可塑,厚层状,粉粒含量不均 52.0 2.0 7-3 粉质 粘土 灰黄、灰绿色,硬可塑,无层理 31.363.9 0.78.6 7-3 粉土 黄色、中密实,有砂感,无层理 50.5 9.2 7-4 粉质粘土 灰色,可塑,软可塑,无层理,土质均一 9.665.6 1.28.1m 7-4 粘土 灰色,可塑,层理状,层理不明显 58.568.5 3.55.9 7-4” 粘质粉土 灰色,很湿,中密,厚层状,层理不明显 28.663.0 1.18.3 7-5 粉质粘土 灰绿、灰黄色,饱和,厚层状 20.375.0
21、 1.122.2 7-5 粘土 灰绿、灰黄色,硬塑坚硬,厚层状,土 质均一 21.574.1 2.710.0 8-2 含砾粉质黏土 灰绿、灰黄色,饱和,无层理 29.971.7 1.210.0 8-3 含粘性土圆砾 灰绿、灰黄色,饱和,中密状,圆粒为主 34.965.5 0.42.4 8-4 粉质粘土 灰绿、灰黄、灰白色,饱和,可塑坚硬 54.470.1 1.43.6 8-4 , 粘土 青灰色,硬可塑,厚层状,夹褐黄色斑块 54.1 3.8 9-1 粉质粘土 灰色,可塑,厚层状,切面粗糙 64.2 3.6 9-2 含粘性土砾砂 灰色、灰黄色,饱和,中密密实 12.565.5 1.72.5 9-
22、3 含粘性土角砾 灰绿、灰黄色,饱和,厚层状 8.680.0 0.56.5 9-3 , 砂质粉土 灰黄色,饱和,软塑硬塑 44.467.0 0.63.4 9-4 含粘性土砾砂 灰绿、灰黄色,饱和,中密 66.069.1 厚度大于 8m 10-1 全风化晶屑凝灰岩 灰绿色,硬塑坚硬 28.973.1 0.62.8 10-2 强风化晶屑凝灰岩 灰绿、灰黄、灰紫、褐灰色,岩质较硬 9.878.1 0.29.1 10-3 中风化晶屑凝灰岩 灰绿、灰紫色,岩质坚硬,凝灰结构 11.984.5 3.113.2 10-4 微风化晶屑凝灰岩 灰绿、灰紫色,坚硬,凝灰结构 25.141.0 厚度大于 5m 三三
23、 工程特点和难点分析工程特点和难点分析 1、 本工程属海港码头海洋潮夕、径流、热带气旋和季风、台风引起的海浪给工程施工造 成一定影响。 2、 本工程由于海边淤泥较深同时又在水下施工给施工中的施工平台的搭建带来难度, 特 别是栈桥重件通道弯桥现浇段施工平台、支架的搭建有影响。 3、 由于施工现场业主提供的预制场地,能满足预制构件的制作、堆放的需要,本工程 的预制构件在施工现场进行预制。 4、 由于本工程桩由打桩船来作业,且桩有的为斜桩,水下淤泥厚度给施工中桩的稳定 带来不利的影响。 四四 施工总体安排施工总体安排 本工程施工工期短,工期较紧,要求各工序之间联结紧密,科学安排施工。 1、本工程施工
24、从 2006 年 11 月 1 日开始进行施工准备工作、基准点校核和基线布设,并 进行桩位计算等施工准备工作;在 2006 年 11 月 30 日前建成砼拌合站。 2、钻孔灌注桩:2006 年 11 月 15 日开始搭设后栈桥、重件通道钻孔灌注桩施工排架, 12 月 1 日开始灌注桩钻孔施工,2006 年 12 月 5 日开始第一次灌注桩砼施工,钻孔灌注桩在 2007 年 3 月 30 日全部完成; 3、联桥、码头预制桩施工:于 2006 年 12 月 20 日开始打桩,2007 年 3 月 30 日完成施 工码头、联桥桩基完工;上部结构在 2007 年 6 月 15 日完成。 4、栈桥重件通
25、道弯桥段现浇箱梁在两端相邻打桩完成进行支架搭设、支模、砼浇筑等上 部结构工作;上部结构在 2007 年 4 月 30 日完成。 施工顺序:先施工码头桩预制,同时施工栈桥、重件通道钻孔灌注桩,后进行帽梁施工; 预制桩基施工在打桩船上进行,并配备 400 匹拖轮一条,400 吨定位方驳一条。预制桩运输 采用 3 条 1000 吨自航驳轮流运输,确保每两天到达现场一船,一船为 20 根。桩基施工确保 每天 6 根,当打桩达到 3 个排架的进度后,即开始夹桩施工和桩头处理,2006 年 12 月 25 日 开始第一榀下横梁或帽梁的底模和钢筋绑扎施工,模板安装及钢筋运送配备 4 条 60 吨方驳、 三条
26、交通船,方驳吊机一条;混凝土采用混凝土搅拌楼搅拌,混凝土输送泵输送入模。考虑 到施工水位的问题,当码头桩基具备施工面后,优先考虑码头下横梁的施工。 预制构件于 2006 年 11 月 20 日开始预制, 2006 年 12 月 20 日完成所有预制构件的预制, 且待养护期到后安装。 靠船构件于 2007 年 1 月 10 日开始安装,构件安装配备 60 吨及 80 吨浮吊进行。其余构 件于 2007 年 1 月 25 日开始安装。2007 年 2 月 20 日开始进行其它上部结构施工。2007 年 4 月 20 日开始码头、重件通道面层浇筑,至 2007 年 6 月 10 日浇筑完成,整个工程
27、于 2007 年 6 月 15 日竣工 五五 工工程质量目标程质量目标 质量方针:精心施工、产品优良、顾客满意、终身负责。 质量目标:质量评定等级为优良工程。 六六 工艺流程工艺流程 1 1 工程施工总流程工程施工总流程 2 2 测量测量控制方案控制方案 测量控制网点测量控制网点建立建立 1施工前,对业主提供之本项目范围内有关的控制点坐标和高程进行复核,根据施工需要, 合理布设施工加密控制网点并绘制成图表,按工程测量规范的主要技术要求进行加密控 施工准备 施工基线布置 水上沉桩 夹桩、夹围令 安装靠船构件 安装边、纵、水平撑 现浇上横梁 安装码头面板 现浇面层 安装橡胶护舷、系船柱 栏杆及其它
28、附属设施 竣工验收 施工平台搭设 钻孔灌注桩 横梁砼浇注 安装栈桥板 现浇弯桥梁板及重件通道面层等 预制 联桥、 码头 梁板 构件 预制方桩加工 现浇下横梁 预制靠船构件 预制边、纵、轨道梁、水平撑 预制码头面板 外购橡胶护舷、系船柱 制网校测。计算数据报监理工程师审核、复测确定无误后,控制网点方可使用。 2. 控制点必须保证其稳定,可靠,并设置易识别标志。在施工期间定期进行复测,以保证控 制点的精度。 3对施工中使用的仪器定期进行校验,确保其精度。保存好原始记录和资料。 3 主要分项工程的施工方法主要分项工程的施工方法 3 3. .1 1 钻钻孔灌注桩施工孔灌注桩施工 3.1.1 钻孔桩施工
29、工艺流程 钻钻孔桩施工工艺流程孔桩施工工艺流程 安装调试钻孔钻机 埋 设 护 筒 搭设工作平台 加工钢护筒 3.1.23.1.2 钻孔钻孔设备及方法设备及方法 本工程有钻孔灌注桩 123 根,其中:栈桥 7492 桩位共 80 根,规格为 1200 工程量 4316.92m3, 栈桥重件通道钻孔灌注桩共 43 根, 1000, 21 根; 1200, 22 根工程量为 2121.7m3. 选用 GP1800 型回旋钻机施工。 采用回旋钻机钻孔和泥浆护壁的方法成孔,钻孔应连续进行。当遇到特殊意外情况而导 致停钻时,应提出钻头并采取适当保护措施,保持壁孔稳定。 钻机安装底座应平稳, 回旋钻机顶部的
30、起吊滑轮缘与轮盘中心的连线垂直于孔位中心线, 偏差不大于 20mm。 为保护孔壁防止塌孔,冲孔施工需采用泥浆护壁,待泥浆造好后方可钻进,护壁泥浆生 产采用含泥量高的优质黄土投入孔内自然造浆的方法,通过泥浆池(120 吨方驳作为泥浆船) 进行循环置换。 3.1.3 施工顺序施工顺序 根据本工程的实际情况,后栈桥桩基由 92 排一直到 74 排,其次为栈桥重件通道由 Z28 向 Z11 方向向前推进组织施工。 (见下图) 3.1.53.1.5 施工技术方案及工艺操作要点施工技术方案及工艺操作要点 3.1.5.1 搭设工作平台搭设工作平台 栈桥钻孔灌注桩需搭设钻孔平台,钻孔平台采用 300mm 圆木
31、作桩基,用横挡木架连接 成整体,同时边上用斜撑加固,平台之间用贝雷架连接作为钻机移动的通道。钻孔平台搭设 见图。 钻孔桩平台平面布置图 堤 顶 路 面 堤 坡 面 木桩 木衍架 3.1.5.23.1.5.2 护筒埋设护筒埋设 为防止塌孔及循环泥浆造成污染,水上护筒选用振动锤振动下沉,护筒应保证筒壁不漏 水,水上施工时钢护筒应先用工作船将钢护筒打入。护筒沉放应严格控制平面位置及垂直度。 钢护筒下沉精度要求达到平面位置偏差不得大于 5Cm,倾斜度不得大于 1/200。钻进过程中 要经常检查护筒是否发生偏移和下沉,并要及时处理。 护筒埋设之前利用经纬仪精确定位各钻孔桩中心纵横轴线,作好钻孔桩中心标记
32、,定出 钢护筒的位置。根据钻孔桩中心纵横轴线,埋设钢护筒。埋设必须认真进行,保证护筒入土, 并在顶部焊加强筋和吊耳,开出水口。 单根钢护筒沉放工艺流程如下: 护筒入架 测量校核 部分下沉 测量校核 继续振动下沉到位。 3.1.5.33.1.5.3 钻进成孔钻进成孔 立好钻架并调整和安放好起吊系统,将钻头吊起,徐徐放进护筒内。启动卷扬机把转盘 吊起,垫方木于转盘底座下面,将钻机调平并对准钻机。 然后装上转盘,要求转盘中心和起吊滑轮在同一铅垂线上,在转进过程中要经常观察转 盘,如有倾斜和移位,要及时纠正,并检查电源线,对供浆、供电系统逐一检查。为准确控 制钻孔深度,应在钻架或钻杆上做出控制深度的尺
33、标,以便在施工中进行观测、记录。 正式开钻前应对钻机进行试钻,即先启动泥浆泵和转盘,使之空转一断时间,待泥浆输 送进钻孔中一定数量后,方可正式开始钻进。 开始钻进时,进尺要适当控制,在护筒刃脚处,应低档慢速钻进,使刃脚外有坚固的泥 浆护壁。钻至刃脚下 1.0 米后,可按土质正常钻进。如护筒外测土质松软发现漏浆时,可提 起钻锥,倒入黏土,再放入钻椎倒转,使胶泥挤入壁孔堵隙,稳住泥浆继续钻进。 钻进成孔过程中,要始终保持孔内泥浆液面高于孔外水位 1.5-2.0m,形成水头压力,保 护孔壁免于坍塌。 成孔的控制深度必须符合设计要求,孔深的控制根据钻机上的标记控制钻杆长度并用测 深绳测量孔深。 孔径控
34、制,钻进时,必须防止钻杆变动引起孔径扩大。 空压机送风须与钻椎回转同时进行,在接钻杆时,先将钻杆提高 30cm,停止钻椎回转, 再送风数分钟,清孔后再放下钻椎,进行接钻杆。 钻孔完成后,应立即检查成孔质量,并填好施工记录。 钻孔作业的劳动组织:每台钻机每班配备操作人员 7 名,其中指挥 1 人,卷扬机 1 人, 机电工兼记录员 2 人,装拆钻杆及清渣 3 人。 3.1.5.43.1.5.4 清孔清孔 终孔后,对成孔进行质量检查。孔深符合要求后进行第一次清孔,通过泥浆置换将孔底 和泥浆中的钻渣清除,清孔时须保持孔内水头,防止塌孔。孔内沉渣厚度满足要求后,及时 安放钢筋笼及砼浇注导管,第二次清孔用
35、灌注导管进行,将孔底的钻渣清除,确保沉渣厚度 满足规范要求。 清孔中注意: 1保持孔内水头,防止塌孔。 2孔底沉渣厚度必须符合设计和规范要求,混凝土导管下完后如果沉渣厚度不满足设 计要求,用导管采用“气举法”进行二次清孔。 3不得用加深孔底深度的方法代替清孔。 3.1.5.53.1.5.5 安放钢筋笼安放钢筋笼 钢筋骨架在现场加工分段制作,用方驳吊机吊入孔内,并在孔口进行焊接接长。成型后 的钢筋笼规格、主筋间距、箍筋间距钢筋笼直径及长度严格按设计图纸及施工规范制作,主 筋焊接采用单面焊,焊缝长度须满足施工技术规范的要求,并将接头错开 1m 以上。主筋接头 采用对焊。为使钢筋骨架有足够的刚度以保
36、证在运输和吊放过程中不产生变形,每隔 2m 用 20mm 钢筋设置一道加强箍。在箍筋上设穿心圆壁厚为 5cm 的混凝土垫块,确保钢筋笼在下放 过程中的垂直度。 钢筋骨架用方驳吊机起吊,第一段放入孔内后用钢管或型钢临时搁支在钻孔平台上,再 起吊另一段,对正位置焊接后逐段放入孔内至设计标高,最后将上面一段的挂环挂在孔口并 临时与护筒口焊牢。钢筋骨架在下放时应注意防止碰撞孔壁,如放入困难,应查明原因,不 得强行插入。钢筋骨架安放后的顶面和底面标高应符合设计要求,其误差不得大于5cm。 3.1.5.63.1.5.6 灌注砼前二次清孔灌注砼前二次清孔 由于孔内原土泥浆在吊放钢筋笼和沉放导管这段时间内使处
37、于悬浮状态的沉渣再次沉 到桩孔底部,最终不能被混凝土冲击反起而成为永久性沉渣,从而影响桩基工程的质量。因 此,必须在混凝土灌注前利用导管进行第二次清孔。当孔口返浆比重及沉渣厚度均符合规范 要求后,应立即进行水下混凝土的灌注工作。 3.1.5.7 水下水下砼浇筑砼浇筑 本工程 123 根灌注桩施工全部采用陆地混凝土浇筑,采用 50m3/h 混凝土搅拌站搅拌, 单根桩的混凝土方量约 45m3,钻孔桩采用快速螺纹接头导管浇筑水下砼,导管直径 0.25m 0.3m。导管使用前须做水密及接头抗拉试验,水密试验水压不小于 1.5MPa,接头抗拉强度不 低于母材强度。导管逐段吊装接长、垂直下放,下口至孔底的
38、距离约 30Cm。导管在孔口与砼 集料斗相连。砼应连续浇筑,首批砼用量为 3m3 左右,首批混凝土浇筑采用隔水栓拔球法施 工,砼浇筑时当集料斗内混凝土方量达到 3m 3后,开启集料斗斗门,首批混凝土灌注成功后, 经泵送,混凝土连续地通过浇筑料斗及导管灌注至水下,直至完成整根桩的浇筑。浇注中应 始终保持砼导管埋深在 2m6m 间。当混凝土灌注临近结束时,核对混凝土的灌入数量,以确 定所测混凝土的高度是否准确,当确定混凝土的顶面标高到位后,停止灌注,拆除灌注导管。 砼浇筑时注意: 1. 导管吊装前应试拼,接口连接严密、牢固。吊装时,导管位于孔中央。 2. 砼灌注之前,应探测孔底泥浆沉淀厚度,如大于
39、规定,须再次清孔。 3. 配制砼所用的材料应符合规范要求。 4. 用于浇注的砼应有良好的和易性,塌落度控制在 18Cm20Cm 之间,不符合规定不得 使用。 5. 水下砼选用的水泥初凝时间不宜早于 2.5h。 6. 砼浇筑中经常测量孔内砼顶面标高,及时调整导管长度,保证埋深。 7. 由混凝土自孔内置换出来的泥浆经连通管导入其它待钻钢护筒回收使用,浇至桩顶 以上部分含有水泥浆的废浆须排放到泥浆处理场内。 8. 灌注桩应超浇 0.50.8m 左右的混凝土,以保证桩头混凝土质量。 3.1.5.8 常见问题的处理和预防常见问题的处理和预防 3.1.5.8.1 塌孔与缩径 钻孔过程中,在淤泥质地层钻进时
40、,易产生缩径。为了保证孔径符合设计要求,可采用上 下反复扫孔,扩大孔径。另外应经常检查钻锥尺寸,如发现钻锥磨损过大应及时更换,保证 孔径满足设计要求。在砂层中钻进时容易产生塌孔,为了防止塌孔可适当加大泥浆比重,控 制钻机钻进速度,以稳定土壁,使之达到合理护壁。如因地下水位变化大造成塌孔,可增加 护筒深度和保持孔内外水位差。发生塌孔时应先探明塌孔位置,将砂和粘土混合物回填到塌 孔位置以上 12 米,如果塌孔严重,应全部回填粘土,等回填物沉淀密实后,重新进行钻孔。 3.1.5.8.2 孔身偏斜 钻孔中如遇孔身偏斜、弯曲时,应分析原因,进行处理。一般可在偏斜处吊住钻头往复扫 孔,使钻孔正直。或使用粘
41、土回填到偏斜处,待沉积密实后钻进。防止发生上述现象的主要 措施有:保持钻机平稳,钻进速度均匀,并及时检查垂直度,在钻具上可设扶正器或加大钻 架上钻杆限制长度。 3.1.5.8.3 漏浆 成孔过程中,泥浆向孔外漏失,原因主要是遇透水性强的土层或护筒埋设太浅,回填土不 密实或护筒接缝不密实等导致漏浆产生。若产生时可分别采取措施,如护筒内水头不能保持, 宜采取护筒周围回填土夯实。在有护筒防护范围内,接缝处可用棉絮等堵 塞,封闭接缝,稳住水头等。 3.1.5.8.4 糊钻及埋钻 成孔过程中,如遇此情况应对泥浆稠度、钻渣进出口、钻杆内径大小、排渣设备进行检查 计算,并控制适当的尺寸。若已严重糊钻,应停钻
42、,提出钻锤,清除钻渣。 3.1.5.8. 5 钢筋笼上浮及压弯 在加工时按设计要求加工,主筋与钢箍焊接牢固,吊放时有足够的起吊点,并垂直吊入。 灌注混凝土时,控制好混凝土浇筑速度,防止发生因浇筑速度过快钢筋笼上浮的现象。在钻 进过程中应及时检查桩机导管垂直度,防止桩身倾斜,吊放钢筋笼时变形。 3.1.5.8. 6 防止断桩 混凝土浇筑过程中采用以下预防:混凝土塌落度严格按照设计或规范要求施工。浇筑混凝 土前检查搅拌系统,保证其正常运行。混凝土浇筑时,应连续进行,一气呵成,并经常检查 混凝土顶面上升高度,及时掌握导管埋入深度,避免导管埋入过深或导管脱离混凝土面现象。 3.1.5.9 桩头处理及二
43、次浇筑 当混凝土强度达到 80%后,拔掉外护筒,用气割将内护筒上部 50cm 的部分割除,凿除表 面的泥浆以及浮浆,并凿平,用清水冲干净,确保混凝土表面无杂物,然后进行钢筋笼焊接 接长。支模板进行二次浇筑至设计标高,模板内表面要平整光洁,并在表面刷一层油;模板 要密实,不得漏浆。 3.2 沉桩沉桩 本工程砼方桩沉桩共 204 根,其中重件通道与码头的联桥桩基 44 根,码头桩基 160 根。 3.2.13.2.1 制桩及制桩及运桩运桩 3.2.1.13.2.1.1 砼方桩制桩及运桩砼方桩制桩及运桩 本工程所有预制桩为砼方桩。当构件强度达到设计强度后,按施工现场沉桩要求,在预 制厂将预制桩用龙门
44、吊吊运至驳船上。运输船选用自航驳逐次按计划运输至现场。运桩应提 前 7 天通知厂方做好准备,并配合监理工程师按港口工程质量检验评定标准对出厂合格 证、装船单、外观进行检查。装船顺序按沉桩顺序逆向自下而上排列,对每根桩进行编号, 装船时用钢丝绳等工具紧固牢靠,用木块作为衬垫,确保运输安全。 2.2.1.2.2.1. 2 2 桩制桩及运桩桩制桩及运桩 砼桩加工由专业厂家加工,钢材必须有材质合格证明书,并按照 50B 的标准进行化学、 力学性能检测。桩的加工严格按照港口工程桩基规范(JTJ254-98) 、钢结构施工及验收规范 (GB20205)及设计和技术规范要求进行制作、验收、试验。 桩按施工单
45、位的加工计划加工完成并经验收合格后,由施工单位的 400 吨自航驳停泊在 出运码头,厂家负责吊桩,装驳后运至施工现场,桩按沉桩要求分批运输。 3.2.23.2.2 作业方法及顺序作业方法及顺序 沉桩作业顺序见下图: 3.2.2.13.2.2.1 基线布设及桩位计算基线布设及桩位计算 沉桩施工之前,根据业主提供的基准点及坐标,在岸上布设施工基线,设置控制点,计 算各桩位的施工坐标。沉桩采用 GPS(全球定位系统)进行测量,并由陆上测量人员用经纬仪 及水准仪配合复核。 3.2.2.23.2.2.2 打桩操作顺序打桩操作顺序 3.2.2.33.2.2.3 桩船设备选型桩船设备选型 根据现场施工条件及
46、设计要求选用打桩船配 D100-13 锤进行施工。桩船及桩锤性能见下 表 打桩船技术性能表 船名 船体尺寸(m) 吃水(m) 龙口型式 俯仰角度 打桩长度 长 宽 深 首 尾 平均 桩 8# 40 20 4.0 2.0 2.0 2.0 外 35 65.3m+水深 DB100-13 柴油锤性能表 锤型 总重量 t 活塞重量 t 总 长 m 冲击次数 min 活塞行程 m 最大打击能量 kN.m / 每击 打桩船驻位 装桩方驳就位 划桩号 捆绑 移船吊桩 移船就位 吊立桩入龙口 关闭下背板 安装替打 调整龙口垂直度 测量定位 桩自沉 微调偏位 拆除吊索 压锤 锤击沉桩 打桩记录 停止锤击 起吊锤和替打 估测桩偏位 DB100-13 20.36 10 6.358 36 45 3.0 335 3.2.2.43.2.2.4 沉桩施工方法沉桩施工方法 整个沉桩施工以标高控制为主