1、我的教学观u 鱼 渔 道u 知识 方法 思想u What How WhySZUSZUIntroduction数学数学分析的产生与发展分析的产生与发展1数学分析的对象、工具与内容数学分析的对象、工具与内容2如何学习数学分析如何学习数学分析3数学分析的产生与发展1 1The Invention and Development of Mathematical Analysis数学分析 = 微积分u微积分是变量数学发展的标志;u数学分析是微积分发展成熟后通用的名称;u数学分析数学分析课程课程是普通高等学校数学是普通高等学校数学类本科专业最重要的专业基础课程,也类本科专业最重要的专业基础课程,也是历时最
2、长、占学分最多的一门课程,是历时最长、占学分最多的一门课程,是几乎所有后继数学课程的基础。是几乎所有后继数学课程的基础。(1 1)微积分的建立)微积分的建立 a. 进入进入17世纪,科技发展给数学提出了世纪,科技发展给数学提出了四类问题:四类问题: 瞬时速度问题; 曲线的切线; 函数极值问题; 求积问题(曲线长度、图形面积等)。b. 英国数学家牛顿(英国数学家牛顿(Newton,1642-1727)和德国数学家莱布尼兹)和德国数学家莱布尼兹(Leibniz,1646-1716)分别独立地建分别独立地建立了微积分。立了微积分。牛顿 莱布尼茨 微积分大体上是由牛顿和莱布尼茨完成的,但不是他们发明的
3、。 恩格斯c.牛顿、莱布尼茨对微积分的主要贡献牛顿、莱布尼茨对微积分的主要贡献 澄清概念澄清概念特别是建立导数(变化率)特别是建立导数(变化率)的概念;的概念; 提炼方法提炼方法从解决具体问题的方法中提从解决具体问题的方法中提炼、创立出普遍适用的微积分方法;炼、创立出普遍适用的微积分方法; 改变形式改变形式把概念与方法的几何形式变把概念与方法的几何形式变成解析形式,使其应用更广泛;成解析形式,使其应用更广泛; 确定关系确定关系确定微分和积分互为逆运算。确定微分和积分互为逆运算。 (2 2)微积分的特点)微积分的特点 与以往的数学相比:微积分的突与以往的数学相比:微积分的突出特点是可以研究不断变
4、化的事物现出特点是可以研究不断变化的事物现象象 运动,是变量数学的标志。运动,是变量数学的标志。(3 3)微积分的应用)微积分的应用 从从17世纪末到世纪末到19世纪初,微积分世纪初,微积分理论被广泛而有效地应用于物理、天理论被广泛而有效地应用于物理、天文等领域。文等领域。(4 4)微积分存在的问题)微积分存在的问题理论体系粗糙,极不严密。它的理论体系粗糙,极不严密。它的一些定理和公式在推导过程前后出现一些定理和公式在推导过程前后出现逻辑矛盾,使人们感到难以理解,这逻辑矛盾,使人们感到难以理解,这种矛盾集中体现在对种矛盾集中体现在对“无穷小量无穷小量”的的理解与处理中。理解与处理中。(5 5)
5、微积分的严密化)微积分的严密化1919世纪初,法国数学家柯西建立世纪初,法国数学家柯西建立了严格的极限理论,后来德国数学家了严格的极限理论,后来德国数学家魏尔斯特拉斯等加以完善,从而形成魏尔斯特拉斯等加以完善,从而形成了了严密的实数理论严密的实数理论。由此把微积分的。由此把微积分的无矛盾性问题归结为实数系统的无矛无矛盾性问题归结为实数系统的无矛盾问题。严密化后的微积分就称为数盾问题。严密化后的微积分就称为数学分析。学分析。微积分得以严密化的基础是:微积分得以严密化的基础是:实数系统的完备性(或连续性)实数系统的完备性(或连续性)数学分析的对象、工具与内容2 2The Objects, Tool
6、s, and Contents of Mathematical Analysis对象:函数内容:微分、积分,以及连接微分与积分的桥梁微积分基本定理。工具:极限函数:函数:物质世界的基本模型物质世界的基本模型世界是物质的,物质是运动的,运动是世界是物质的,物质是运动的,运动是相互联系的。这种相互联系的物质运动大都相互联系的。这种相互联系的物质运动大都可以被数学家抽象为以可以被数学家抽象为以数量之间的变化关系数量之间的变化关系为基本特征为基本特征的的数学模型数学模型函数函数。数学模型。数学模型是人类认识与改造世界的一个基本手段。是人类认识与改造世界的一个基本手段。有些事物的变化是离散的有些事物的变
7、化是离散的比如:比如:随着时间的推移,中国奥运金牌的数量;随着时间的推移,中国奥运金牌的数量;随着时间的推移,母鸡下蛋的数量;随着时间的推移,母鸡下蛋的数量;随着重量的增加,邮局邮寄包裹的价格;随着重量的增加,邮局邮寄包裹的价格;随着路程的增大,乘坐出租车的费用;随着路程的增大,乘坐出租车的费用;0 xy0 xy0 xy有些事物的变化则是连续的有些事物的变化则是连续的比如:比如:随着时间的推移,一辆汽车行走距离、速度随着时间的推移,一辆汽车行走距离、速度的变化;人的动作;的变化;人的动作;随着时间的推移,某地气温的变化;随着时间的推移,某地气温的变化;随着半径的增大,圆盘面积的变化;随着半径的
8、增大,圆盘面积的变化;随着气压的增高,水的沸点的变化;随着气压的增高,水的沸点的变化;0 xy0 xy0 xy函数既有具有具体表达式的初等函数函数既有具有具体表达式的初等函数常值函数;常值函数;幂函数与根式函数;幂函数与根式函数;三角函数与反三角函数;三角函数与反三角函数;指数函数与对数函数指数函数与对数函数通过它们的有限次四则运算、复合运算所得通过它们的有限次四则运算、复合运算所得到的函数及其反函数。到的函数及其反函数。也有更多的不能具体通过代数式表示、也有更多的不能具体通过代数式表示、但却具有实际意义的函数,以及一般的但却具有实际意义的函数,以及一般的抽象函数。抽象函数。微积分:微积分:研
9、究连续性变化研究连续性变化连续性变化的情况涉及到每一个瞬间,连续性变化的情况涉及到每一个瞬间,涉及到涉及到“无穷小无穷小”的时间段内的变化情况,的时间段内的变化情况,人类是无法精确捕捉到的。如何研究?人类是无法精确捕捉到的。如何研究?动画片如何表现连续动作?动画片如何表现连续动作?切片!很短时间内的一种静止画面。切片!很短时间内的一种静止画面。“微小的差异微小的差异”是微分积分的奥秘!是微分积分的奥秘!观察某一微小变化观察某一微小变化 = = 微分微分连接一系列微小变化连接一系列微小变化 = =积分积分微分:微分:函数的局部性质函数的局部性质函数表示的是因变量依赖于自变量的变函数表示的是因变量
10、依赖于自变量的变化关系,函数值反映的是变化结果,但不能化关系,函数值反映的是变化结果,但不能反映变化速度。函数的微分刻画的正是函数反映变化速度。函数的微分刻画的正是函数的瞬时变化速度。的瞬时变化速度。平均速度平均速度 VSVS 瞬时速度瞬时速度积分:积分:函数的整体性质函数的整体性质一个运动器每一时刻都有一个瞬时速度,一个运动器每一时刻都有一个瞬时速度,从而会行走一段距离;但是在一定时间内,从而会行走一段距离;但是在一定时间内,速度可能在变,如何知道变速运动在一定时速度可能在变,如何知道变速运动在一定时间内的运行路程,这就是积分问题。积分问间内的运行路程,这就是积分问题。积分问题是研究函数的整
11、体变化性质。题是研究函数的整体变化性质。对于一个给定函数来说,局部与整体是对于一个给定函数来说,局部与整体是一个事物的两个方面,二者是对立的统一。一个事物的两个方面,二者是对立的统一。因此,微分与积分具有密切关系,积分因此,微分与积分具有密切关系,积分问题是由函数的局部性质研究整体性质。建问题是由函数的局部性质研究整体性质。建立二者关系的桥梁是立二者关系的桥梁是 微积分基本定理微积分基本定理牛顿牛顿- -莱布尼茨公式莱布尼茨公式。极限:极限:人类认识无限的必要手段人类认识无限的必要手段由于生理的原因,人类只能看到有限时由于生理的原因,人类只能看到有限时间、有限范围内的事物;只能判断、测量在间、
12、有限范围内的事物;只能判断、测量在一定时间段内事物的变化量与平均变化速度。一定时间段内事物的变化量与平均变化速度。要认识无限变化的事物,要确定事物瞬时变要认识无限变化的事物,要确定事物瞬时变化的情况等,极限是一个有效工具。化的情况等,极限是一个有效工具。平均速度平均速度 VSVS 瞬时速度瞬时速度 时刻时刻 t 之后之后 s 秒内的平均速度秒内的平均速度= = s 秒内的行走路程秒内的行走路程 d/ /s时间幅度时间幅度 s 无限趋近于无限趋近于0 0 时刻时刻 t 的瞬时的瞬时速度速度直边图形面积直边图形面积 VSVS 曲边曲边图形面积图形面积 abxyoabxyo00.10.20.30.4
13、0.50.60.70.80.9100.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91微积分研究函数的基本观点是微积分研究函数的基本观点是以静代动;以直代曲。以静代动;以直代曲。如何学习数学分析3 3How to Study Mathematical Analysis方法中最主要的一个问题,方法中最主要的一个问题,就是就是“熟能生巧熟能生巧” 。但是。但是我这里
14、所说的孰,并不是要大我这里所说的孰,并不是要大家死背定律和公式,或死记人家死背定律和公式,或死记人家现成的结论家现成的结论 。孰就是要掌。孰就是要掌握你所研究的学科的主要环节,握你所研究的学科的主要环节,要懂得前人是怎样思考和发明要懂得前人是怎样思考和发明这些东西的。这些东西的。 华罗庚(华罗庚(1956年)年) 华罗庚一般来说 F数学是做会的,不是背会的!F学习数学重在掌握数学思想方法,而不是简单地记住一堆数学知识(定义、定理、公式)F 信息时代的学生要实现由“学会”到“会学”的转变。p 数学好比一座城市,课本就是城市地数学好比一座城市,课本就是城市地图、老师则是导游员。图、老师则是导游员。
15、p 要想真正掌握这座要想真正掌握这座“城市城市”,必须亲,必须亲自走一走(做习题)自走一走(做习题) 会学的要求或标志会学的要求或标志u 会提出问题:会提出问题:会怀疑、会发现、会怀疑、会发现、会提会提问、会请教问、会请教u 会寻找方法:会寻找方法:会寻求、会探索、会选会寻求、会探索、会选择择会提出问题会提出问题 有了疑问先思考,带着想法去请教。有了疑问先思考,带着想法去请教。 敢于怀疑、提出不同意见,勇于发现敢于怀疑、提出不同意见,勇于发现问题,努力从旧知识中提出新问题来问题,努力从旧知识中提出新问题来研究,是培养会提问题、进而增强会研究,是培养会提问题、进而增强会学本领的有效途径。学本领的
16、有效途径。会寻找方法会寻找方法 对老问题,从方法是怎样想出来的思对老问题,从方法是怎样想出来的思考中积累经验;遇新问题,探索、寻考中积累经验;遇新问题,探索、寻求多种方法,对比、选择合适方法。求多种方法,对比、选择合适方法。这些是培养会找方法、进而增强会学这些是培养会找方法、进而增强会学本领的有效途径。本领的有效途径。(最优化是数学的基本目标之一)(最优化是数学的基本目标之一)学习数学分析的具体要求学习数学分析的具体要求 1. 阅读教材阅读教材课前粗读(预习,了解大意,了解难点);课前粗读(预习,了解大意,了解难点);课后精读(深刻理解概念本质,弄清结论因果课后精读(深刻理解概念本质,弄清结论
17、因果关系及证明思想和思路,明白例题关系及证明思想和思路,明白例题目的、解法、步骤)目的、解法、步骤)2. 不要缺席,认真听讲不要缺席,认真听讲原则上,老师在课堂上会对教学内容进行系统原则上,老师在课堂上会对教学内容进行系统的讲授,尤其会把重点、难点、基本思想、基的讲授,尤其会把重点、难点、基本思想、基本方法、意义价值讲透。本方法、意义价值讲透。认真听讲,在预习的基础上明白教材难点,有认真听讲,在预习的基础上明白教材难点,有重点地去听,有选择地去记。重点地去听,有选择地去记。3. 独立完成作业独立完成作业(1 1)尽可能地通过画图解释问题的条件和结论,利)尽可能地通过画图解释问题的条件和结论,利
18、用几何直观找出解题的方法与思路。用几何直观找出解题的方法与思路。(2 2)把你的解题过程一步一步地写出来,就像你在)把你的解题过程一步一步地写出来,就像你在向别人做解释一样,不允许似是而非、牵强附向别人做解释一样,不允许似是而非、牵强附会、模棱两可。会、模棱两可。(3 3)想一想为什么这个习题会出现在这里?为什么)想一想为什么这个习题会出现在这里?为什么老师会布置它?它与课本内容或其它习题有什老师会布置它?它与课本内容或其它习题有什么关系?么关系?4. 知识、方法、思想知识、方法、思想(1 1)知识:弄清概念(背景、涵义),性质)知识:弄清概念(背景、涵义),性质(内在)、定理(外部联系)、公
19、式。(内在)、定理(外部联系)、公式。(2 2)方法:运算法则、求解步骤、应用模型)方法:运算法则、求解步骤、应用模型 。(3 3)思想:概念引入、性质提炼、定理建立)思想:概念引入、性质提炼、定理建立的原则,法则、公式成立的原理,不同的原则,法则、公式成立的原理,不同对象的对比。对象的对比。 5. 注意总结注意总结每周周末设法用自己的语言把本周所学的每周周末设法用自己的语言把本周所学的内容进行梳理,用简短的语言描述其中的关键内容进行梳理,用简短的语言描述其中的关键知识点,弄清知识本身的本质以及相互关系。知识点,弄清知识本身的本质以及相互关系。 6. 注意与同学交流,向老师请教,多做注意与同学交流,向老师请教,多做课外练习课外练习u 每周周一上午交作业每周周一上午交作业u 不要求抄题,但要标不要求抄题,但要标明题号明题号u 全交、不全改全交、不全改u 平时作业完成情况与平时作业完成情况与考勤情况占学期总评考勤情况占学期总评的的30%30%