第1课时-运用平方差公式因式分解PPT课件.ppt

上传人(卖家):三亚风情 文档编号:2761610 上传时间:2022-05-24 格式:PPT 页数:23 大小:1.37MB
下载 相关 举报
第1课时-运用平方差公式因式分解PPT课件.ppt_第1页
第1页 / 共23页
第1课时-运用平方差公式因式分解PPT课件.ppt_第2页
第2页 / 共23页
第1课时-运用平方差公式因式分解PPT课件.ppt_第3页
第3页 / 共23页
第1课时-运用平方差公式因式分解PPT课件.ppt_第4页
第4页 / 共23页
第1课时-运用平方差公式因式分解PPT课件.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、2020年9月28日114.3.2 第十四章 整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结课本八年级数学上(RJ) 教学课件第1课时 运用平方差公式因式分解2020年9月28日2学习目标1.探索并运用平方差公式进行因式分解,体会转化 思想(重点)2.能会综合运用提公因式法和平方差公式对多项式进 行因式分解(难点)2020年9月28日3导入新课导入新课a米米b米米b米米a米米(a-b)情境引入如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?a2- - b2=(a+b)(a- -b)2020年9月28日4讲授新课讲授新课

2、用平方差公式进行因式分解一想一想:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式)(baba-+=22ba-)(22bababa-+=-整式乘法因式分解因式分解两个数的平方差,等于这两个数的和与这两个数的差的乘积.平方差公式:2020年9月28日5辨一辨:下列多项式能否用平方差公式来分解因式,为什么?符合平方差的形式的多项式才能用平方差公式进行因式分解,即能写成: ( )2-( )2的形式. 两数是平方,两数是平方,减号在中央减号在中央(1)x2+y2(2)x2-y2(3)-x2-y2-(x2+y2)y2-x2(4)-x2+y2(5)x2-25y2(x+5y)(x-

3、5y)(6)m2-1(m+1)(m-1)2020年9月28日62(1) 49;x 例1 分解因式: 22(2 )3x(23)(23);xx22(2)()() .xpx qaabb( +)(-)a2 - b2 =解:(1)原式=2x32x2x33() () () ()xpx qxpx q(2)原式(2)().xp q p q 整体思想22()()xpx q典例精析2020年9月28日7方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.2020年9月28日8分解因式:(1)(ab)24a2; (2)9(mn)2(mn)2.针对

4、训练(2m4n)(4m2n)解:(1)原式(ab2a)(ab2a)(ba)(3ab);(2)原式(3m3nmn)(3m3nmn)4(m2n)(2mn)若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解.2020年9月28日9)(22bababa-+=-2015220142 =(2mn)2 - ( 3xy)2 =(x+z)2 - (y+p)2 =2020年9月28日10例2 分解因式: 443(1);(2).xya bab解:(1)原式(x2)2-(y2)2(x2+y2)(x2-y2)分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解.(x2+y2)(x+y)(x

5、-y);(2)原式ab(a2-1)分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.ab(a+1)(a-1).2020年9月28日11方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式注意分解因式必须进行到每一个多项式都不能再分解因式为止2020年9月28日12分解因式:(1)5m2a45m2b4; (2)a24b2a2b.针对训练(a2b)(a2b1).5m2(a2b2)(ab)(ab);解:(1)原式5m2(a4b4)5m2(a2b2)(a2b2) (2)原式(a24b2)(a2b)(a2b)(a2b)(a2b)2020年9月28日13例3 已知x2y

6、22,xy1,求x-y,x,y的值xy2.解:x2y2(xy)(xy)2,xy1,联立组成二元一次方程组,解得1,23.2xy 2020年9月28日14方法总结:在与x2y2,xy有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.2020年9月28日15例4 计算下列各题:(1)1012992; (2)53.524-46.524.解:(1)原式(10199)(10199)400;(2)原式4(53.5246.52)=4(53.546.5)(53.546.5)41007=2800.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.20

7、20年9月28日16例5 求证:当n为整数时,多项式(2n+1)2-(2n-1)2一定能被8整除即多项式(2n+1)2-(2n-1)2一定能被8整除证明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n2=8n,n为整数,8n被8整除,方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除2020年9月28日171.下列多项式中能用平方差公式分解因式的是()Aa2(b)2 B5m220mnCx2y2 Dx29当堂练习当堂练习D2.分解因式(2x+3)2 -x2的结果是()A3(x2+4x+3) B3(x2+2x+3)C(3x+3)(x+3) D3(x+

8、1)(x+3) D3.若a+b=3,a-b=7,则b2-a2的值为()A-21 B21 C-10 D10A2020年9月28日184.把下列各式分解因式:=_; =_; =_; (4) -a4+16=_.(4a+3b)(4a-3b)4ab9xy(y+2x)(y-2x)(4+a2)(2+a)(2-a)5.若将 2xn-81分解成 4x2+9 2x+3 2x-3 ,则n的值是_.42020年9月28日196.已知4m+n=40,2m-3n=5求 m+2n2- 3m-n2的值原式=-405=-200解:原式= m+2n+3m-n m+2n-3m+n= 4m+n 3n-2m=- 4m+n (2m-3n

9、 ,当4m+n=40,2m-3n=5时,2020年9月28日207.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积解:根据题意,得6.8241.626.82 (21.6)26.823.22(6.83.2)(6.8 3.2)103.636 (cm2)答:剩余部分的面积为36 cm2.2020年9月28日218. (1)992-1能否被100整除吗?解:(1)因为 992-1=(99+1)(99-1)=10098,所以,(2n+1)2-25能被4整除.(2)n为整数,(2n+1)2-25能否被4整除?所以992-1能否被100整除.(2)原式=(2n

10、+1+5)(2n+1-5)=(2n+6)(2n-4) =2(n+3) 2(n-2)=4(n+3)(n-2).2020年9月28日22课堂小结课堂小结平 方 差公 式 分解 因 式公式a2-b2=(a+b)(a-b)步骤一提:公因式;二套:公式;三查:多项式的因式分解有没有分解到不能再分解为止. 2020年9月28日23演讲完毕,谢谢观看!Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!汇报人:XXX 汇报日期:20XX年10月10日

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第1课时-运用平方差公式因式分解PPT课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|