1、材料员基础知识材料员材料员 培训培训建筑材料的分类建筑材料的分类 1. 通常按材料的组成分为三大类:无机材料无机材料金属材料金属材料非金属材料非金属材料(矿物质材料矿物质材料)黑色金属黑色金属 有色金属有色金属天然石材天然石材烧土制品烧土制品 胶凝材料胶凝材料 混凝土及硅酸盐制品混凝土及硅酸盐制品有机材料有机材料植物材料植物材料沥青材料沥青材料高分子材料高分子材料复合材料复合材料无机非金属材料与有机材料复合无机非金属材料与有机材料复合 金属材料与无机非金属材料复合金属材料与无机非金属材料复合 金属材料与有机材料复合金属材料与有机材料复合2. 2. 按材料在建筑物中的功能可分为按材料在建筑物中的
2、功能可分为承重材料承重材料保温隔热材料保温隔热材料吸声隔声材料吸声隔声材料防水材料防水材料装饰材料装饰材料建建筑筑材材料料结构材料结构材料墙体材料墙体材料屋面材料屋面材料地面材料地面材料饰面材料饰面材料3. 3. 按材料的使用部位分为按材料的使用部位分为建建筑筑材材料料材料的基本性质材料的体积 体积是材料占有的空间尺寸。由于材料具有不同的物理状态,因而表现出不同的体积。封闭孔隙(体积为Vb)开口孔隙(体积为Vk)固体物质(体积为V)材料在自然状态下总体积:V0V+Vp 孔隙体积:VpVb+VkVp孔隙体积 1.密度(干燥状态干燥状态) 指材料在绝对密实状态下单位体积的质量,按下式计算: 式中:
3、实际密度,g/cm3 或 kg/m3; m材料的质量,g 或 kg; V材料的绝对密实体积,cm3 或 m3。每种材料的密度是固定不变的。每种材料的密度是固定不变的。Vm2.表观密度 表观密度是指材料在自然状态下单位体积的质量。按下式计算: 式中:0材料的表观密度, g/cm3 或 kg/m3; m 材料的质量,g 或 kg; V0材料的自然体积,cm3 或 m3。00Vm 表观密度通常是指在气干状态下(长期在空气中存放的干燥状态)的表观密度,表观密度通常是指在气干状态下(长期在空气中存放的干燥状态)的表观密度,材料在烘干状态下测得的表观密度,称为干表观密度;材料在潮湿状态下测得的表材料在烘干
4、状态下测得的表观密度,称为干表观密度;材料在潮湿状态下测得的表观密度,称为湿表观密度。观密度,称为湿表观密度。 表观体积是指包括内部封闭孔隙在内的体积。其封闭孔隙的多少,孔隙中是否含有水及含水的多少,均可能影响其总质量或体积。 因此,材料的表观密度与其内部构成状态及含水状态有关。工程中砂石材料,直接用排水法测定其表观体积3. 堆积密度 堆积密度是指粉状或粒状材料,在堆积状态下单位体积的质量。按下式计算: 式中:0材料的堆积密度, g/cm3 或 kg/m3; m 材料的质量,g 或 kg; 材料的堆积体积,cm3 或 m3。00Vm0V 由于散粒材料堆放的紧密程度不同,堆积表观密度又可分为疏松
5、堆积表观密度、紧密堆积表观密度二种。 利用材料孔隙率可计算散粒材料的空隙率。其中材料的表观密度以堆积表观密度代入,密度以视密度(包括闭口孔隙体积)代入。所得结果是颗粒之间的空隙和开口孔隙占总体积的百分率。孔隙率孔隙率 孔隙率是指材料中孔隙体积与总体积的百分比。孔隙率是指材料中孔隙体积与总体积的百分比。 材料的孔隙率可按下式计算:材料的孔隙率可按下式计算: Vp V0 V 孔隙率的大小直接反映了材料的致密程度。孔隙率的大小直接反映了材料的致密程度。 密实度 (压实度)(压实度) D D P = 1P = 1%100)1 (%10000VVVP空隙率空隙率 散粒材料堆积体积中,颗粒之间的空隙体积散
6、粒材料堆积体积中,颗粒之间的空隙体积所占的比例称为空隙率。空隙率(所占的比例称为空隙率。空隙率(P)可按下式)可按下式计算:计算: 空隙率的大小反映散粒材料的颗粒相互填充空隙率的大小反映散粒材料的颗粒相互填充的致密程度。的致密程度。 空隙率可作为控制混凝土骨料级配与计算含空隙率可作为控制混凝土骨料级配与计算含砂率的依据。砂率的依据。%100000VVVP 孔隙率与空隙率的区别比较项目孔隙率空隙率适用场合个体材料内部堆积材料之间作 用可判断材料性质可进行材料用量计算计算公式)(10010P)(100100P材料与水有关的性质材料与水有关的性质 亲水性与憎水性亲水性与憎水性 与水接触时,材料表面能
7、被水润湿的性质称为亲水性;材料表面不能被水润湿的性质称为憎水性。 具有亲水性或憎水性的根本原因在于材料的分子结构。亲水性材料与水分子之间的分子作用力,大于水分子相互之间的内聚力;憎水性材料与水分子之间的作用力,小于水分子相互之间的内聚力。材料的四种含水状态与材料的四种含水状态与含水率含水率 1. 1. 干燥状态:材料中所有的孔隙中无水;干燥状态:材料中所有的孔隙中无水;2. 2. 气干状态:材料中部分的孔隙中含水;气干状态:材料中部分的孔隙中含水; (其含水量用(其含水量用平衡含水率平衡含水率来表示,其大小与环境有关)来表示,其大小与环境有关)3. 3. 饱和面干状态:材料中所有的孔隙中充满水
8、;饱和面干状态:材料中所有的孔隙中充满水;(其含水量用(其含水量用吸水率吸水率来表示,其大小与孔隙率有关,来表示,其大小与孔隙率有关,吸水率的大小可以吸水率的大小可以反映材料的致密程度。)反映材料的致密程度。)材料的四种含水状态与材料的四种含水状态与含水率含水率4. 4. 湿润状态:除材料中所有的孔隙中充满水湿润状态:除材料中所有的孔隙中充满水之外,其表面还含有表面水;之外,其表面还含有表面水;(其含水量用(其含水量用表面含水率表面含水率来表示,其大小与来表示,其大小与湿润程度有关,湿润程度有关,表面含水率可为负值)表面含水率可为负值)吸水性与吸湿性吸水性与吸湿性 材料材料(在水中)(在水中)
9、吸收水分的性质称为吸收水分的性质称为吸水性吸水性。 材料材料(在空气中)(在空气中)吸收水分的性质称为吸收水分的性质称为吸湿性。吸湿性。 材料中的含水量与其材料中的含水量与其干燥质量干燥质量的百分比称为的百分比称为含水率含水率 材料中的水分与周围空气的湿度达到平衡时(材料材料中的水分与周围空气的湿度达到平衡时(材料 处于气干状态)的含水率称为处于气干状态)的含水率称为平衡含水率平衡含水率。材料在材料在饱和面干饱和面干状态时的含水率称为状态时的含水率称为吸水率吸水率 。 吸水率可用质量或体积吸水率两种方式表达。吸水率可用质量或体积吸水率两种方式表达。 质量吸水率的计算式为:质量吸水率的计算式为:
10、%100ggbmmmmW式中:式中: mb材料吸水饱和状态下的质量;材料吸水饱和状态下的质量; mg材料在干燥状态下的质量。材料在干燥状态下的质量。体积吸水率的计算式为:体积吸水率的计算式为:%10010WgbvVmmW式中式中: mb材料吸水饱和状态下的质量;材料吸水饱和状态下的质量;mg材料在干燥状态下的质量。材料在干燥状态下的质量。V0 材料在自然状态下的体积;材料在自然状态下的体积;w 水的密度水的密度, 常温下取常温下取1.0 g/cm3。Wv与与Wm的关系为:的关系为: 式中式中 G1材料吸水饱和状态下的质量;材料吸水饱和状态下的质量; G材料干燥状态下的质量;材料干燥状态下的质量
11、; 水水水的密度;水的密度; V 0材料在自然状态下的体积;材料在自然状态下的体积; 材料的干表观密度。材料的干表观密度。 吸水率与含水率的区别比较项目吸水率含水率适用场合在水中吸收水分在空气中吸收水分表示方法吸收水分的质量比或体积比吸收水分的质量比吸收水量达到饱和与空气中水分平衡通常小于吸水率材料的耐水性材料的耐水性 材料的耐水性是指材料长期在饱和水的作用下不破坏,强度也不显著降低的性质。材料耐水性的指标用软化系数KR表示:式中: KR 材料的软化系数; fb 材料吸水饱和状态下的抗压强度; fg 材料在干燥状态下的抗压强度。 经常位于水中或受潮严重的重要结构,其K软不宜小 于0.850.9
12、0; 受潮较轻或次要结构,其K软也不宜小于0.70.85。gbRffK抗渗性抗渗性 材料抵抗压力水渗透的性能称为抗渗性。材料的材料抵抗压力水渗透的性能称为抗渗性。材料的抗渗性与材料的孔隙率及孔隙特征有关。抗渗性与材料的孔隙率及孔隙特征有关。材料的抗渗性可用渗透系数或抗渗等级来表示。材料的抗渗性可用渗透系数或抗渗等级来表示。 式中:式中:K渗透系数,渗透系数,ml/(cm2s););Q透水量,透水量,ml;d试件厚度试件厚度 (cm););A透水面积,透水面积, cm2 ;H水头水头差,;差,; t透水时间,透水时间,s。材料的抗冻性材料的抗冻性 材料的抗冻性,是指材料在水饱和状态下,能经受材料
13、的抗冻性,是指材料在水饱和状态下,能经受多次冻融而不产生宏观破坏,同时微观结构不明显多次冻融而不产生宏观破坏,同时微观结构不明显劣化、强度也不严重降低的性能。劣化、强度也不严重降低的性能。 2. 2. 材料的抗冻性用材料的抗冻性用抗冻等级抗冻等级来表示来表示, ,如如F15F153.3. 抗冻等级抗冻等级,是指,是指材料的标准试件,材料的标准试件,在水饱和状态在水饱和状态下,经受下,经受冻融循环冻融循环作用后,其强度不严重降低、质作用后,其强度不严重降低、质量不显著损失、性能不明显下降时,所经受的量不显著损失、性能不明显下降时,所经受的冻融冻融循环的循环的次数次数。影响抗冻性的因素影响抗冻性的
14、因素材料的密实度(孔隙率):密实度越高则其抗冻材料的密实度(孔隙率):密实度越高则其抗冻性越好。性越好。材料的孔隙特征:开口孔隙越多则其抗冻性越差。材料的孔隙特征:开口孔隙越多则其抗冻性越差。材料的强度:强度越高则其抗冻性越好。材料的强度:强度越高则其抗冻性越好。材料的耐水性:耐水性越好则其抗冻性也越好。材料的耐水性:耐水性越好则其抗冻性也越好。材料的吸水量大小:吸水量越大则其抗冻性越差。材料的吸水量大小:吸水量越大则其抗冻性越差。材料传导热量的性质称为材料传导热量的性质称为导热性导热性。材料导热。材料导热性的大小用导热系数表示:性的大小用导热系数表示:式中式中 导热系数,导热系数,W(mK)
15、; Q通过材料的热量,通过材料的热量,J; d材料厚度或传导的距离,材料厚度或传导的距离,m; A材料传热面积,材料传热面积,m2; Z导热时间,导热时间,s; t材料两侧的温度差,材料两侧的温度差,K。 孔隙率孔隙率 材料的孔隙中含有空气材料的孔隙中含有空气, ,而空气的导热性而空气的导热性很小很小, ,所以材料的孔隙率愈大所以材料的孔隙率愈大, ,导热性愈低。导热性愈低。 孔隙特征孔隙特征 空气在粗大和连通的孔隙中较易对流空气在粗大和连通的孔隙中较易对流, ,使导热性增大使导热性增大, ,故具有细微或封闭孔隙的材料故具有细微或封闭孔隙的材料, ,比具比具有粗大或连通孔隙的材料导热性低。有粗
16、大或连通孔隙的材料导热性低。 含水率含水率 水的导热性大大超过空气,所以当材料水的导热性大大超过空气,所以当材料 的含水率增大时其导热性也相应提高。若水结冰,的含水率增大时其导热性也相应提高。若水结冰, 其导热性进一步增大。其导热性进一步增大。 对于纤维结构的材料,顺纤维方向的导热性比横对于纤维结构的材料,顺纤维方向的导热性比横纤维方向的大。纤维方向的大。影响材料导热性的因素影响材料导热性的因素 当材料温度升高当材料温度升高(或降低或降低)1K时所吸收时所吸收(或放出或放出)的热的热量,称为该材料的量,称为该材料的热容量热容量(JK)。l kg材料的热容量,材料的热容量,称为该材料的称为该材料
17、的比热比热J(K)。表示方法:。表示方法:式中式中 Q材料吸收或放出的热量,材料吸收或放出的热量,J C材料的比热,材料的比热,J(kgK); G材料的质量,材料的质量,kg; t2- t1 材料受热(或冷却)前后的温度差,材料受热(或冷却)前后的温度差,K。 比热及热容量比热及热容量材料材料导热系数导热系数w/(mk)比热比热102J/(K)材料材料导热系数导热系数w/(mk)比热比热102J/(K)钢钢584.6松松木木顺纹顺纹0.3525花岗岩花岗岩2.803.498.5横纹横纹0.17普通混凝土普通混凝土1.501.868.8泡沫塑料泡沫塑料0.030.041317普通粘土砖普通粘土砖
18、0.420.638.4石膏板石膏板0.190.24911泡沫混凝土泡沫混凝土0.120.2011.0水水0.5542普通玻璃普通玻璃0.700.808.4密闭空气密闭空气0.2610材料的温度变形性材料的温度变形性 材料的温度变形是指温度升高或降低时材料的体积变化。用线膨胀系数表示。 L =(t2 t1) L式中:L线膨胀或线收缩量 ,mm 或 cm;(t2t1)材料前后的温度差,K; 材料在常温下的平均线膨胀系数,1/K; L材料原来的长度,mm或m。 材料的线膨胀系数与材料的组成和结构有关,常选择合适的材料来满足工程对温度变形的要求。材料的力学性质材料的力学性质 材料的力学性质材料的力学性
19、质, ,是指材料在外力作用下有关是指材料在外力作用下有关变形性质变形性质和和抵抗破坏的能力抵抗破坏的能力。 一一. . 材料的变形性质材料的变形性质 二二. . 材料的强度材料的强度一、材料的变形性质一、材料的变形性质 材料的变形性质材料的变形性质, 是指材料在荷载作用下发生形是指材料在荷载作用下发生形状及体积变化的有关性质。主要有弹性变形、塑性状及体积变化的有关性质。主要有弹性变形、塑性变形、徐变与应力松弛。变形、徐变与应力松弛。(一)弹性变形与塑性变形(一)弹性变形与塑性变形 弹性变形是指在外荷载作用下产生、卸荷后可弹性变形是指在外荷载作用下产生、卸荷后可以以自行消失自行消失的变形。的变形
20、。 塑性变形是指在外力去除后,材料塑性变形是指在外力去除后,材料不能自行恢不能自行恢复复到原来的形状而保留的变形,也称残余变形。到原来的形状而保留的变形,也称残余变形。 弹性与塑性变形弹性与塑性变形塑性材料与脆性材料塑性材料与脆性材料塑性材料:破坏前的塑性材料:破坏前的变形变形 明显明显脆性材料:破坏前的脆性材料:破坏前的变形变形 不明显不明显塑性材料的特点:抗压强度塑性材料的特点:抗压强度、抗拉强度、抗拉强度脆性材料的特点:抗压强度脆性材料的特点:抗压强度 、抗拉强度抗拉强度(二)徐变与应力松弛(二)徐变与应力松弛 固体材料在固体材料在恒定恒定外力作用外力作用下,变形随时间的延长而逐渐下,变
21、形随时间的延长而逐渐增长的现象称为增长的现象称为徐变徐变。材料在恒定荷载作用下,材料在恒定荷载作用下,若所产生的变形因受约束而不若所产生的变形因受约束而不能发展时,其应力将随时间的能发展时,其应力将随时间的延长而逐渐减小,这一现象称延长而逐渐减小,这一现象称为为应力松弛应力松弛。二、材料的强度二、材料的强度 材料的强度是指材料抵抗外力(荷载)作用引起的破材料的强度是指材料抵抗外力(荷载)作用引起的破坏的能力。坏的能力。(一)材料的静力强度(一)材料的静力强度 在静荷载作用下,材料达到破坏前所承受的应力极限在静荷载作用下,材料达到破坏前所承受的应力极限值,称为材料的静力强度(简称材料强度)或极限
22、强度。值,称为材料的静力强度(简称材料强度)或极限强度。 根据作用荷载的不同,材料强度可分为抗压强度、抗根据作用荷载的不同,材料强度可分为抗压强度、抗拉强度、抗弯强度(或抗折强度)和抗剪强度等。拉强度、抗弯强度(或抗折强度)和抗剪强度等。材料强度的测定材料强度的测定 材料强度的测定常用破坏性试验方法来进材料强度的测定常用破坏性试验方法来进行。即将材料制成试件,置于试验机上,行。即将材料制成试件,置于试验机上,按规定按规定的速度均匀的速度均匀地加荷,直到试件破坏,由试件破坏地加荷,直到试件破坏,由试件破坏时的荷载值,按相应计算公式,可求得材料强度。时的荷载值,按相应计算公式,可求得材料强度。抗压
23、、抗拉及抗剪强度的计算抗压、抗拉及抗剪强度的计算式中式中f 材料强度,材料强度,MPa; F 破坏时荷载,破坏时荷载,N; A 试件受力断面面积,试件受力断面面积,mm2。 AFf/抗弯强度的计算抗弯强度的计算 抗弯强度的计算公式分别为:抗弯强度的计算公式分别为: 集中荷载集中荷载 三分点加荷三分点加荷 式中式中 fm抗弯强度,抗弯强度,MPa; F破坏荷载,破坏荷载,N; L梁的跨度,梁的跨度,mm; b、h梁断面的宽与高,梁断面的宽与高,mm。223bhFLfm2bhFLfm(四)材料的持久强度及疲劳极限(四)材料的持久强度及疲劳极限 材料在承受材料在承受持久荷载持久荷载下的强度,称为下的
24、强度,称为持久强度持久强度。 静力强度静力强度是材料在承受是材料在承受短期荷载短期荷载条件下具有的强度,条件下具有的强度,也称也称暂时强度暂时强度。 实际结构物中材料承受的荷载通常既有实际结构物中材料承受的荷载通常既有持久荷载持久荷载(自重)和又有(自重)和又有短期荷载短期荷载(活荷载)(活荷载)。材料在持久荷载材料在持久荷载作用下会产生徐变,使塑性变形增加,故材料的持久强作用下会产生徐变,使塑性变形增加,故材料的持久强度一般低于暂时强度。度一般低于暂时强度。疲劳极限疲劳极限 材料承受的材料承受的荷载随时间而交替变化荷载随时间而交替变化时,其应时,其应力也随时间而交替变化。这种交替变化的应力超
25、过力也随时间而交替变化。这种交替变化的应力超过某一极限、且多次反复作用后,即会导致材料破坏,某一极限、且多次反复作用后,即会导致材料破坏,该应力极限值称为该应力极限值称为疲劳极限疲劳极限。疲劳极限与静力破坏。疲劳极限与静力破坏不同,它常在没有显著变形的情况下,突然断裂。不同,它常在没有显著变形的情况下,突然断裂。疲劳极限远低于静力强度,甚至低于疲劳极限远低于静力强度,甚至低于屈服强度屈服强度。三、材料的冲击韧性三、材料的冲击韧性 材料抵抗冲击或震动等荷载作用的性能,称为材料抵抗冲击或震动等荷载作用的性能,称为冲冲击击韧性韧性。冲击韧性以试件受冲击时,单位体积或单位。冲击韧性以试件受冲击时,单位
26、体积或单位面积内所能吸收的冲击功来表示。面积内所能吸收的冲击功来表示。 脆性材料受冲击后易碎裂;强度低的材料不能承脆性材料受冲击后易碎裂;强度低的材料不能承受较大的冲击荷载。故材料冲击韧性可反映材料既有受较大的冲击荷载。故材料冲击韧性可反映材料既有一定强度,又有良好受力变形的综合性能。一定强度,又有良好受力变形的综合性能。 桥梁、路面、桩及有抗震要求的结构所用的材料桥梁、路面、桩及有抗震要求的结构所用的材料需考虑冲击韧性。需考虑冲击韧性。四、材料的硬度、磨损及磨耗四、材料的硬度、磨损及磨耗 材料抵抗其它较硬物体压入的能力称为材料抵抗其它较硬物体压入的能力称为硬硬度度。 材料受外界物质的摩擦作用
27、而造成质量和材料受外界物质的摩擦作用而造成质量和体积损失的现象称为体积损失的现象称为磨损磨损。用磨耗率表示。用磨耗率表示材料同时受到摩擦和冲击两种作用而造成材料同时受到摩擦和冲击两种作用而造成的质量和体积损耗现象称为的质量和体积损耗现象称为磨耗磨耗。AmmG21石灰与水泥概述 胶凝材料的定义 经过一系列的物理和化学变化,能够产生凝结硬化,将块状或粉状材料胶结起来,形成为一个整体的材料。 胶凝材料的分类如沥青、聚合物等胶凝材料无机胶凝材料有机胶凝材料气硬性胶凝材料水硬性胶凝材料如:石灰、石膏、水玻璃等通称为“水泥”一、石灰的生产 原材料 生产石灰的原材料包括天然石灰石和化工副产品。主要成分为Ca
28、CO3。 生产工艺煅烧 石灰生产过程,是石灰石煅烧过程。根据煅烧程度可分为欠火石灰、正火石灰、过火石灰。 CaCO3 = CaO + CO2MgCO3= MgO + CO2900700生石灰 欠火石灰的中心部分仍是碳酸钙硬块,不能熟化,形成渣子。过火石灰结构紧密,且表面有一层深褐色的玻璃状硬壳,故熟化很慢,当被用于建筑物后,能继续熟化产生体积膨胀,从而引起裂缝或局部脱落现象。为消除过火石灰的危害,石灰浆应在消解坑中存放两星期以上(称为“陈伏”),使未熟化的颗粒充分熟化。“陈伏”期间,石灰浆表面应覆盖一层水膜,以免石灰浆碳化。二、石灰的熟化硬化过程 石灰的熟化: CaO+H2O= Ca(OH)2
29、+64.9KJ 石灰的硬化 Ca(OH)2从饱和溶液中析出,晶体互相交叉连生,从而提高强度结晶过程 Ca(OH)2空气中的CO2发生化学反应,形成CaCO3使石灰的强度逐渐提高碳化过程 石灰的品种 按石灰中的氧化镁含量的高低分 按成品的加工方法分 块状生石灰、磨细生石灰粉、消石灰粉、石灰膏、石灰乳等。生石灰钙质石灰镁质石灰MgO5%MgO5%三、石灰的技术性质和技术标准 石灰的质量等级 建筑生石灰、建筑生石灰粉、建筑消石灰粉按有效CaOMgO的含量,可分为优等品、一等品和合格品三个等级。 石灰的特性 1.可塑性好;2.生石灰吸湿性强,保水性好;3.凝结硬化慢、强度低 ;4.硬化后体积收缩大,易
30、开裂;5.耐水性差 。四、石灰的应用 配制石灰砂浆和石灰乳; 配制三合土和灰土; 制作碳化石灰板; 生产硅酸盐制品; 生产无熟料水泥。四、石灰的储存 生石灰、消石灰用牛皮纸、复合纸、编制袋包装,袋上应标明厂名、产品名称、商标、净重、等级和批量编号。 生石灰每袋净重分401kg和501kg;消石灰分200.5kg和401kg。 堆放生石灰的仓库应密闭,屋面不得漏水,灰堆离墙壁距离70mm 石膏 一、石膏的生产 二、建筑石膏的水化与硬化 三、建筑石膏的技术特性、质量要求与应用 四、高强石膏一、石膏的生产& 石膏胶凝材料是一种以为主要成分的气硬性胶凝材料&原材料:天然二水石膏(CaSO42H2O)与
31、无水石膏( CaSO4),其中无水石膏只能生产无水石膏水泥。& 生产:主要工序破碎、加热与磨细。一、石膏的生产一、石膏的生产天天 然然二水石膏二水石膏65657575 C C高强石膏高强石膏 - -半水石膏半水石膏建筑石膏建筑石膏 - -半水石膏半水石膏107107170170 C C开开 始始 脱脱 水水压蒸锅压蒸锅1.31.3大气压大气压127 127 C C 型半水石膏结晶细小、分散度高、其中杂质含量少型半水石膏结晶细小、分散度高、其中杂质含量少,白度较高,常用于制作模型合花饰,称模型石膏,在陶,白度较高,常用于制作模型合花饰,称模型石膏,在陶瓷工业中用做成型的模型。瓷工业中用做成型的模
32、型。 型半水石膏结晶粗大,生成的半水石膏是粗大而密型半水石膏结晶粗大,生成的半水石膏是粗大而密实的晶体,水化后具有较高强度,故称高强石膏。实的晶体,水化后具有较高强度,故称高强石膏。 二、建筑石膏的水化与硬化1、水化反应方程式、水化反应方程式: CaSO4H2O+1H2O=CaSO42H2O2、浆体的凝结硬化过程、浆体的凝结硬化过程: 半水石膏溶解于水以后,很快成为饱和溶液。二水半水石膏溶解于水以后,很快成为饱和溶液。二水石膏在水中的溶解度小于半水石膏,达到饱和后形成石膏在水中的溶解度小于半水石膏,达到饱和后形成胶体微粒并不断转变为晶体析出,破坏溶液的平衡,胶体微粒并不断转变为晶体析出,破坏溶
33、液的平衡,使半水石膏不断溶解,同时水分不断减少,使半水石膏不断溶解,同时水分不断减少,浆体逐渐浆体逐渐变稠,晶体逐渐长大,共生和相互交错,这个过程使变稠,晶体逐渐长大,共生和相互交错,这个过程使浆体逐渐产生强度,并不断增长,直到完全干燥,晶浆体逐渐产生强度,并不断增长,直到完全干燥,晶体之间的摩擦力和粘结力不再增加,强度才停止发展。体之间的摩擦力和粘结力不再增加,强度才停止发展。 三、建筑石膏的性质、要求与应用 1、建筑石膏技术性质 (1)凝结硬化速度快,初凝6min,终凝30min。 (2)与水泥相比硬化后强度较低(36MPa),表观密度小。 (3)由于石膏制品的孔隙率大,因而导热系数小,吸
34、声性强,吸湿性大,可调节室内温湿度。 (4)石膏凝结过程中体积膨胀,装饰性好。 (5)石膏制品的耐水性差抗冻性差,不宜用于潮 湿部位。 (6)具有良好的抗火性能。三、建筑石膏的性质、要求与应用 2、质量要求建筑石膏的质量要求主要有强度、细建筑石膏的质量要求主要有强度、细度和凝结时间。度和凝结时间。按强度和细度划分为优等品、一等品按强度和细度划分为优等品、一等品和合格品。执行标准和合格品。执行标准GB9776-1988。各等级建筑石膏的初凝时间不得小于各等级建筑石膏的初凝时间不得小于6min,终凝时间不得大于终凝时间不得大于30min。三、建筑石膏的性质、要求与应用3、应用(1)制成石膏抹灰材料
35、)制成石膏抹灰材料(2)各种墙体材料如纸面石膏板、石)各种墙体材料如纸面石膏板、石 膏空心砌块、石膏空心条板膏空心砌块、石膏空心条板(3)各种装饰石膏板、石膏浮雕花饰、)各种装饰石膏板、石膏浮雕花饰、 雕塑制品。雕塑制品。4、使用时应注意问题: 在运输及储存时应防止受潮,一 般储存三个月后强度降低30%左右。 生石灰储存时间不宜过长,一般不超过一个月。作到“随到随化”。 不得与易燃、易爆等危险液体物品混合存放和混合运输。 熟石灰在使用前必须陈伏15d以上,以防止过火石灰对建筑物产生的危害。水泥的特点和适用范围 水泥的特点 水泥是一种粉末状材料,加水后拌合均匀形成的浆体,不仅能够在干燥环境中凝结
36、硬化,而且能更好地在水中硬化,保持或发展其强度,形成具有堆聚结构的人造石材。 水泥适用范围 不仅适合用于干燥环境中的工程部位,而且也适合用于潮湿环境及水中的工程部位。水泥的分类 按性能和用途分粉煤灰硅酸盐水泥火山灰质硅酸盐水泥水 泥通用水泥专用水泥特性水泥硅酸盐水泥普通硅酸盐水泥矿渣硅酸盐水泥复合硅酸盐水泥石灰石硅酸盐水泥如砌筑水泥、油井水泥、道路水泥、大坝水泥等如白色硅酸盐水泥、快凝快硬硅酸盐水泥等 按主要水硬性物质分水泥种类主要水硬性物质主 要 品 种硅酸盐水泥硅酸钙绝大多数通用水泥、专用水泥和特性水泥铝酸盐水泥铝酸钙高铝水泥、自应力铝酸盐水泥、快硬高强铝酸盐水泥等。硫铝酸盐水泥无水硫铝酸
37、钙硅酸二钙有自应力硫铝酸盐水泥、低碱度硫铝酸盐水泥、快硬硫铝酸盐水泥等铁铝酸盐水泥铁相、无水硫铝酸钙、硅酸二钙有自应力铁铝酸盐水泥、膨胀铁铝酸盐水泥、快硬铁铝酸盐水泥等氟铝酸盐水泥氟铝酸钙、硅酸二钙氟铝酸盐水泥等以火山灰或潜在水硬性材料以及其他活性材料为主要组分的水泥活性二氧化硅活性氧化铝石灰火山灰水泥、石膏矿渣水泥、低热钢渣矿渣水泥等一、硅酸盐水泥的原材料和生产工艺 硅酸盐水泥的原材料生产硅酸盐水泥熟料的原材料 石灰质原料石灰质原料 天然石灰石。也可采用与天然石灰石化学成分相似的材料如白垩、石灰石等。 粘土质原料粘土质原料 主要为粘土,其主要化学成分为SiO2,其次为Al2O3和少量Fe2O
38、3。 铁矿粉铁矿粉 采用赤铁矿,化学成分为Fe2O3。 石膏石膏主要为天然石膏矿、无水硫酸钙等 。混合材料 包括活性混合材料(粒化高炉矿渣、粉煤灰、火山灰质混合材料等)和非活性混合材料(石灰石粉、磨细石英砂等)。 硅酸盐水泥的生产工艺“两磨一烧”工艺 生产水泥的方法主要有干法立窑生产和湿法回转窑生产两种 ; 硅酸盐水泥分为:型硅酸盐水泥(不掺混合材料)和型硅酸盐水泥(掺不超过5%混合材料)。一、硅酸盐水泥的原材料和生产工艺石灰石粘 土铁矿粉生 料石 膏硅酸盐水泥混合材料熟 料按比例混合磨细13501450煅烧磨细二、熟料的矿物组成及其特性 熟料的矿物组成水泥熟料矿物硅酸二钙铁铝酸四钙游离氧化钙
39、和氧化镁铝酸三钙硅酸三钙碱类及杂质2CaOSiO2,C2S4CaOAl2O3Fe2O3,C4AFfCaO和fMgO3CaOAl2O3,C3A3CaOSiO2,C3S化学式及简写二、熟料的矿物组成及其特性 水泥熟料矿物的主要特性 熟料矿物磨细加水,均能单独与水发生化学反应。矿物名称硅酸三钙硅酸二钙铝酸三钙铁铝酸四钙含量范围(质量)376715307151018水化反应速度快慢最快快强 度高早期低,后期高低低(含量多时对抗折强度有利)水 化 热较高低最高中 氧化镁(MgO):它是一种有害成分,含量多时会使水泥安定性不良。国家规定:硅酸盐水泥中MgO的含量一般不得超过5;若经试验论证其含量允许放宽到
40、6。MgO含量不符合规定者,为废品。 三氧化硫(SO3):它主要是粉磨熟料时掺入石膏带来的。当石膏掺量合适时,既可以调节水泥的凝结时间,又可以提高水泥的性能;但当石膏掺入量超过一定值时,会使水泥的性能变差。国家标准规定:硅酸盐水泥中SO3的含量不得超过3.5。SO3含量不符合规定者,为废品。 游离氧化钙(fCaO):它是在煅烧过程中未能反应结合而残存下来的过烧并呈游离态的CaO。如果fCaO的含量较高,则由于其滞后的水化,产生结晶膨胀而导致水泥石开裂,甚至破坏,即造成水泥安定性不良。通常熟料中fCaO含量应严格控制在12以下。 碱分(K2O,Na2O)可以增加pH值到13.5,对保护钢筋有利。
41、然而,太高的碱含量会产生碱骨料反应和引起浆体的收缩变形,因此熟料中碱含量应加以限制。三、硅酸盐水泥的凝结和硬化 凝结硬化的概念 凝结:水泥加水拌合而成的浆体,经过一系列物理化学变化,浆体逐渐变稠失去可塑性而成为水泥石的过程; 硬化:水泥石强度逐渐发展的过程称为硬化。 水泥的凝结过程和硬化过程是连续进行的。凝结过程较短暂,一般几个小时即可完成;硬化过程是一个长期的过程,在一定温度和湿度下可持续几十年 熟料矿物的水化反应 硅酸三钙2(3CaOSiO2)6H2O = 3CaO2SiO23H2O3Ca(OH)2 硅酸二钙2(2CaOSiO2)4H2O = 3CaO2SiO23H2OCa(OH)2 铝酸
42、三钙3CaOAl2O3H2O = 3CaOAl2O36H2O3CaOAl2O36H2O3(CaSO42H2O)19H2O = 3CaOAl2O33CaSO431H2O 铁铝酸四钙4CaOAl2O3Fe2O37H2O = 3CaOAl2O36H2OCaOFe2O3H2O 熟料矿物的水化反应过程水化初期 熟料矿物与水反应的速度较快,使水化产物不断地从液相中析出并聚集在水泥颗粒表面,形成以水化硅酸钙凝胶为主体的凝胶薄膜,大约在1h左右即在凝胶薄膜外侧及液相中形成粗短的针状钙矾石晶体。 水化中期 以水化硅酸钙(CSH)和氢氧化钙的快速形成为特征。水化后期 由于新生成的水化产物的压力,水泥颗粒薄膜的凝胶
43、薄膜破裂,使水进入未水化水泥颗粒的表面,水化反应继续进行。水化产物之间互相交叉连生,不断密实,固体之间的空隙不断减小,网状结构不断加强,结构逐渐紧密。 DABCA凝胶体凝胶体(CSH凝胶,水化硅酸钙凝胶);凝胶,水化硅酸钙凝胶);B晶体晶体(氢氧化钙、水化铝酸钙、水化硫铝酸钙);(氢氧化钙、水化铝酸钙、水化硫铝酸钙);C孔隙孔隙(毛细孔、凝胶孔、气孔等);(毛细孔、凝胶孔、气孔等);D未水化的水泥颗粒未水化的水泥颗粒水泥石的结构水泥石的结构 1、水泥石主要由凝胶体、晶体、水泥石主要由凝胶体、晶体、 孔孔 隙、水、空气和未水化的水泥颗粒隙、水、空气和未水化的水泥颗粒 等组成,存在固相、液相等组成
44、,存在固相、液相 和气相。和气相。2、硬化后的水泥石是一种多相多孔、硬化后的水泥石是一种多相多孔 体系。体系。 3、水泥石的结构(水化产物的种类、水泥石的结构(水化产物的种类 及相对含量、孔的结构)对其性及相对含量、孔的结构)对其性 能影响最大能影响最大。 硅酸盐水泥的主要技术性质1.密度:指水泥在自然状态下单位体积的质量,分松散和紧密状态下的密度,分别为9001300kg/m3和14001700kg/m3,通常取1300kg/m3。2.细度细度是指水泥颗粒的粗细程度。水泥颗粒的粗细,直接影响其水化反应速度、活性和强度。水泥细度可用筛析法和比表面积法来检测。筛析法,是以80m方孔筛的筛余量来表
45、示水泥的细度。比表面积法,是用1kg水泥所具有的总表面积(m2/kg)来表示水泥的细度。国家标准规定硅酸盐水泥的比表面积可用透气法(勃压法)测定,其值应大于300m2/kg。细度不符合规定的,为不合格品。3.标准稠度用水量 由于加水量的多少,对水泥一些技术性质的测定值影响很大,故测定这些性质时,必须在一个规定的浆体稠度下进行。这个规定的稠度,即称为标准稠度。水泥净浆达到标准稠度时,所需的拌和水量(以占水泥质量的百分比表示),称为标准稠度用水量(也称需水量)。 硅酸盐水泥的标准稠度用水量一般在2430之间。水泥熟料矿物成分不同时,准稠度用水量亦有差别。此外,水泥磨得越细,标准稠度用水量越大。 水
46、泥标准中,对标准稠度用水量没有提出具体要求。当其它条件相同时,水泥的标准稠度用水量越小越好。4.凝结时间凝结时间 分为初凝时间和终凝时间。初凝时间是从加水至水泥浆开始失去塑性的时间;终凝时间是从加水至水泥浆完全失去塑性的时间。水泥初凝时间不宜过早,终凝时间不宜过迟。 国家标准GB1751999规定:硅酸盐水泥初凝不得早于45min,终凝不得迟于6.5h。5.体积安定性体积安定性是指水泥浆体硬化后体积变化的稳定性。水泥安定性不良的原因: 熟料中含有过量的游离氧化钙(fCaO),或含有过量的游离氧化镁(fMgO); 生产水泥时掺入的石膏过量。 检验水泥安定性的方法,有试饼法及雷氏法两种,通过对试件
47、进行煮沸加速f-CaO熟化,然后检查是否有不安定现象。国家标准GB1751999规定,硅酸盐水泥的安定性用沸煮法检验必须合格。体积安定性不良的水泥严禁用于工程中。 6.强度及强度等级(1)胶砂强度 国家标准规定,水泥和标准砂按1:3.0质量比混合,加入规定量的水(水灰比为0.50),经标准试验方法搅拌成型。制成40mm40mm160mm的标准试件,在标准条件(1d温度为201,相对湿度90以上的空气中带模养护;1d以后拆模,放入201的水中养护)下养护。根据水泥品种不同,分别测定3d、28d的抗折强度和抗压强度,即为水泥的胶砂强度。 (2)强度等级 根据水泥的胶砂强度划分的级别称为强度等级。硅
48、酸盐水泥的强度等级划分为42.5,42.5R,52.5,52.5R,62.5,62.5R共六个等级。强度等级抗压强度,MPa抗折强度,MPa3d28d3d28d42.542.5R52.552.5R62.562.5R17.022.023.027.028.032.042.542.552.552.562.562.53.54.04.05.05.05.56.56.57.07.08.08.0注:R型为早强型,主要是3d强度较高。7.水化热水泥的水化热是指在水化过程中的放热量,单位为kJ/kg。水化热的高低与熟料矿物的相对含量有关。铝酸三钙、硅酸三钙的水化热高,而铁铝酸四钙、硅酸二钙的水化热较低。因此要降低
49、水化热,可适当减少铝酸三钙和硅酸三钙的含量。水化热主要对大体积混凝土工程有影响。对于大体积混凝土工程,应选择水化热较低的水泥,或者采取特殊措施降低水化热的危害。 水泥石的腐蚀及防止 水泥石腐蚀的方式(1)软水侵蚀(溶出性侵蚀)(2)酸的腐蚀(溶解性化学腐蚀) 一般酸的腐蚀 碳酸水的腐蚀(3)硫酸盐腐蚀(膨胀性化学腐蚀)(4)强碱腐蚀水泥石的腐蚀及防止 防止水泥石腐蚀的措施(1)根据工程的环境特点,合理选择水泥品种。(2)提高混凝土的密实度。(3)在水泥石结构的表面设置保护层。硅酸盐水泥的特性 凝结硬化快,早期及后期强度均高,适用于有早强要求的工程。 抗冻性好,适合水工混凝土和抗冻性要求高的工程
50、。 耐腐蚀性差,因水化后氢氧化钙和水化铝酸钙的含量较多。 水化热高,不宜用于大体积混凝土工程。但有利于低温季节蓄热法施工。 抗碳化性好。因水化后氢氧化钙含量较多,故水泥石的碱度不易降低,对钢筋的保护作用强。适用于空气中二氧化碳浓度高的环境。硅酸盐水泥的特性 耐热性差。因水化后氢氧化钙含量高。不适用于承受高温作用的混凝土工程。 耐磨性好,适用于高速公路、道路和地面工程。掺混合材料的硅酸盐水泥 混合材料 为了改善水泥性能、提高水泥的产量,在生产时掺入的天然或人工矿物质材料。活性混合材料:具有潜在水硬性或火山灰特性,或者兼具有潜在水硬性和火山灰特性的混合材料。 粒化高炉矿渣; 粉煤灰; 火山灰质混合