第4讲椭圆.docx

上传人(卖家):欢乐马 文档编号:288550 上传时间:2020-02-23 格式:DOCX 页数:9 大小:102.82KB
下载 相关 举报
第4讲椭圆.docx_第1页
第1页 / 共9页
第4讲椭圆.docx_第2页
第2页 / 共9页
第4讲椭圆.docx_第3页
第3页 / 共9页
第4讲椭圆.docx_第4页
第4页 / 共9页
第4讲椭圆.docx_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、第4讲 椭 圆一、选择题1中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.1 B.1C.1 D.1解析依题意知:2a18,a9,2c2a,c3,b2a2c281972,椭圆方程为1.答案A2椭圆1(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为 ()A. B. C. D.2解析因为A,B为左、右顶点,F1,F2为左、右焦点,所以|AF1|ac,|F1F2|2c,|F1B|ac.又因为|AF1|,|F1F2|,|F1B|成等比数列,所以(ac)(ac)4c2,即a25

2、c2.所以离心率e,故选B.答案B3已知椭圆x2my21的离心率e,则实数m的取值范围是 ()A. B.C. D.解析椭圆标准方程为x21.当m1时,e21,解得m;当0m1时,e21m,解得0mb0)的两顶点为A(a,0),B(0,b),且左焦点为F,FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A. B.C. D.解析 根据已知a2b2a2(ac)2,即c2aca20,即e2e10,解得e,故所求的椭圆的离心率为.答案B6已知椭圆C:1(ab0)的离心率为.双曲线x2y21的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.1 B.1C.1

3、 D.1解析因为椭圆的离心率为,所以e,c2a2,c2a2a2b2,所以b2a2,即a24b2.双曲线的渐近线方程为yx,代入椭圆方程得1,即1,所以x2b2,xb,y2b2,yb,则在第一象限双曲线的渐近线与椭圆C的交点坐标为,所以四边形的面积为4bbb216,所以b25,所以椭圆方程为1.答案D二、填空题7设F1、F2分别是椭圆1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|3,则P点到椭圆左焦点的距离为_解析 由题意知|OM|PF2|3,|PF2|6.|PF1|2564.答案 48在等差数列an中,a2a311,a2a3a421,则椭圆C:1的离心率为_解析由题意,得a410,

4、设公差为d,则a3a2(10d)(102d)203d11,d3,a5a4d13,a6a42d16a5,e.答案9. 椭圆=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的_倍解析 不妨设F1(3,0),F2(3,0)由条件得P(3,),即|PF2|=,|PF1|=,因此|PF1|=7|PF2|.答案 710.如图,OFB,ABF的面积为2,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为_解析设标准方程为1(ab0),由题可知,|OF|c,|OB|b,|BF|a,OFB,a2b.SABF|AF|BO|(ac)b(2bb)b2,b22,b,a

5、2,椭圆的方程为1.答案1三、解答题11如图,设P是圆x2y225上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的长度解(1)设M的坐标为(x,y),P的坐标为(xP,yP),由已知得P在圆上,x2225,即C的方程为1.(2)过点(3,0)且斜率为的直线方程为y(x3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y(x3)代入C的方程,得1,即x23x80.x1,x2.线段AB的长度为|AB| .12设F1,F2分别为椭圆C:1(ab0)的左、右焦点,过F

6、2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,F1到直线l的距离为2.(1)求椭圆C的焦距;(2)如果2,求椭圆C的方程解(1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c2,故c2.所以椭圆C的焦距为4.(2)设A(x1,y1),B(x2,y2),由2及l的倾斜角为60,知y10,直线l的方程为y(x2)由消去x,整理得(3a2b2)y24b2y3b40.解得y1,y2.因为2,所以y12y2,即2,解得a3.而a2b24,所以b25.故椭圆C的方程为1.13 如图,在平面直角坐标系xOy中,椭圆C:1(ab0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x

7、y20相切(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2)设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上(1)解由题意知,b.因为离心率e,所以 .所以a2.所以椭圆C的方程为1.(2)证明由题意可设M,N的坐标分别为(x0,y0),(x0,y0),则直线PM的方程为yx1,直线QN的方程为yx2.法一联立解得x,y,即T.由1,可得x84y.因为221,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上法二设T(x,y),联立解得x0,y0.因为1,所以221.整理得(2y3)2,所以12y84y212y9,即1.所以点T坐标满足椭圆C的方

8、程,即点T在椭圆C上14如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且AB1B2是面积为4的直角三角形(1)求该椭圆的离心率和标准方程;(2)过B1作直线l交椭圆于P,Q两点,使PB2QB2,求直线l的方程解(1) 如图,设所求椭圆的标准方程为1(ab0),右焦点为F2(c,0)因AB1B2是直角三角形,又|AB1|AB2|,故B1AB2为直角,因此|OA|OB2|,得b.结合c2a2b2得4b2a2b2,故a25b2,c24b2,所以离心率e.在RtAB1B2中,OAB1B2,故SAB1B2|B1B2|OA|OB

9、2|OA|bb2.由题设条件SAB1B24得b24,从而a25b220.因此所求椭圆的标准方程为:1.(2)由(1)知B1(2,0),B2(2,0)由题意知直线l的倾斜角不为0,故可设直线l的方程为xmy2.代入椭圆方程得(m25)y24my160.设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,因此y1y2,y1y2,又(x12,y1),(x22,y2),所以(x12)(x22)y1y2(my14)(my24)y1y2(m21)y1y24m(y1y2)1616,由PB2QB2,得0,即16m2640,解得m2.所以满足条件的直线有两条,其方程分别为x2y20和x2y20.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(第4讲椭圆.docx)为本站会员(欢乐马)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|