经典电子气体模型-特鲁德模型假设和理论课件.ppt

上传人(卖家):三亚风情 文档编号:2924800 上传时间:2022-06-11 格式:PPT 页数:78 大小:1.41MB
下载 相关 举报
经典电子气体模型-特鲁德模型假设和理论课件.ppt_第1页
第1页 / 共78页
经典电子气体模型-特鲁德模型假设和理论课件.ppt_第2页
第2页 / 共78页
经典电子气体模型-特鲁德模型假设和理论课件.ppt_第3页
第3页 / 共78页
经典电子气体模型-特鲁德模型假设和理论课件.ppt_第4页
第4页 / 共78页
经典电子气体模型-特鲁德模型假设和理论课件.ppt_第5页
第5页 / 共78页
点击查看更多>>
资源描述

1、经典电子气体模型经典电子气体模型特鲁德模型假设和理论特鲁德模型假设和理论特鲁德模型的基本假设特鲁德模型的基本假设 特鲁德对金属结构的描述:特鲁德对金属结构的描述:和价电子 金属原子可分为原子核、内层电子和价电子,把原子核和内层电子看成离子实,即我们常说的金属离子,其价电子与金属离子分离并可在固体中自由移动,形成一种电子云或者电子气。这些可移动电子在外加电场的作用下产生一定的电流,这些作为电子气的价电子称为导带电子。 特鲁德的经典理论将自由电子看作是特鲁德的经典理论将自由电子看作是经典离子气体,服从波尔兹曼分布经典离子气体,服从波尔兹曼分布(速度分速度分布布),与中性稀薄气体一样去处理,认为电,

2、与中性稀薄气体一样去处理,认为电子之间无相互作用,同时也不考虑离子实子之间无相互作用,同时也不考虑离子实势场的作用,这样一个简单的物理模型处势场的作用,这样一个简单的物理模型处理金属的许多动力学问题是很成功的。理金属的许多动力学问题是很成功的。 特鲁德模型,即经典的特鲁德模型,即经典的自由电子气模型自由电子气模型,是建立在金属电子气体假设基础上的,利用经是建立在金属电子气体假设基础上的,利用经典的分子运动学理论处理问题,主要包括四层典的分子运动学理论处理问题,主要包括四层基本含意:基本含意: (1)自由电子近似)自由电子近似 忽略掉电子和离子之间相互作用的近似忽略掉电子和离子之间相互作用的近似

3、 (2)独立电子近似)独立电子近似 忽略电子与电子之间的库仑排斥相互作用忽略电子与电子之间的库仑排斥相互作用 (3)碰撞假设)碰撞假设 忽略电子之间的碰撞,仅考虑电子与离子实之间的碰撞。忽略电子之间的碰撞,仅考虑电子与离子实之间的碰撞。假设电子和周围环境达到热平衡仅仅是通过碰撞实现的,假设电子和周围环境达到热平衡仅仅是通过碰撞实现的,碰撞前后电子的速度毫无关联。碰撞前后电子的速度毫无关联。 (4)驰豫时间近似)驰豫时间近似 假假设驰豫时间与电子位置和速度无关设驰豫时间与电子位置和速度无关 特鲁德模型的缺陷:特鲁德模型的缺陷: 忽略了电子与离子实之间的相互作用,认忽略了电子与离子实之间的相互作用

4、,认为电子气系统的总能量为电子的动能,势能被为电子气系统的总能量为电子的动能,势能被忽略忽略。因此,特鲁德模型虽然可以成功说明金。因此,特鲁德模型虽然可以成功说明金属的某些输运过程,却在处理比热和磁化率等属的某些输运过程,却在处理比热和磁化率等问题上遇到了不可克服的障碍。问题上遇到了不可克服的障碍。电子气中的导带电子在金属电子气中的导带电子在金属中以平均速率中以平均速率u随机运动,并随机运动,并因原子的热振动而频繁的发因原子的热振动而频繁的发生随机散射。在没有外加电生随机散射。在没有外加电场的情况下,在任何方向上场的情况下,在任何方向上没有净漂移没有净漂移在外加电场在外加电场Ex的作用下,沿的

5、作用下,沿x方向有一净漂移,该沿电方向有一净漂移,该沿电场力方向的净漂移加在电子场力方向的净漂移加在电子的随机运动上。经过多次散的随机运动上。经过多次散射后,电子从其初始位置向射后,电子从其初始位置向正端呈现一净位移正端呈现一净位移x特鲁德模型应用实例特鲁德模型应用实例: (1) 电导电导若若uxi是是x方向上第方向上第i个电子刚碰撞后的速率,由于个电子刚碰撞后的速率,由于eEx/me是电子的加速度,其在是电子的加速度,其在x方向上时刻方向上时刻t的速的速率率vxi为:为:)(iexxixittmeEuv)(121iexxNxxdxttmeEvvvNvxedxEmev其中其中是平均自由时间是平

6、均自由时间式中可看出漂移速率随所加电场线性增加,其比式中可看出漂移速率随所加电场线性增加,其比例常数例常数e/me称为迁移率称为迁移率d。这就将电子的迁移。这就将电子的迁移率与它们的平均自由时间联系起来了。率与它们的平均自由时间联系起来了。xddxEvxdxEenJxxEJden能计算出金属的直流电导率,成功的解释了欧姆定律;能计算出金属的直流电导率,成功的解释了欧姆定律; xxEJ能估算出金属电子的平均自由时间(驰豫时间)能估算出金属电子的平均自由时间(驰豫时间)和平均自由程:和平均自由程:edmneen2dxvl xedxEmev 由此算出平均自由程约在由此算出平均自由程约在0.1-1nm

7、范围内,与实验相符。范围内,与实验相符。 驰豫时间:驰豫时间:平均自由程:平均自由程:特鲁德模型应用实例特鲁德模型应用实例: (2) 热导热导 特鲁德模型把金属电子看成经典理想气体。因特鲁德模型把金属电子看成经典理想气体。因此其遵循玻尔兹曼统计规律:每个电子有此其遵循玻尔兹曼统计规律:每个电子有3个自由个自由度,每个自由度对应度,每个自由度对应kBT/2的平均能量。的平均能量。TnkuB23TuCmV,BmVnkC23, 这一结论,与实验结果不相符(实际值较高温这一结论,与实验结果不相符(实际值较高温度时度时3NkB,极低温度下,与,极低温度下,与T3成比例);此外,成比例);此外,特鲁德模型

8、在处理磁化率等问题上也遇到了根本性特鲁德模型在处理磁化率等问题上也遇到了根本性的困难。的困难。 5.2 自由电子气体模型自由电子气体模型索末菲模型索末菲模型 索末菲模型是建立在量子理论与费米统计规索末菲模型是建立在量子理论与费米统计规律的基础上的。律的基础上的。索末菲模型认为传导电子不应看作经典粒子气体,索末菲模型认为传导电子不应看作经典粒子气体,而应当看作自由电子费米气体。忽略传导电子与而应当看作自由电子费米气体。忽略传导电子与离子实之间的相互作用,忽略传导电子之间的相离子实之间的相互作用,忽略传导电子之间的相互作用,这种自由电子气体服从费米互作用,这种自由电子气体服从费米狄喇克统狄喇克统计

9、规律。计规律。 索末菲模型与特鲁德模型的区别:索末菲模型与特鲁德模型的区别: 在特鲁德模型中,认为金属电子气体类似于在特鲁德模型中,认为金属电子气体类似于理想气体,是玻色子(如原子,离子等),遵循理想气体,是玻色子(如原子,离子等),遵循玻尔兹曼统计规律。玻尔兹曼统计规律。 在索末菲模型中,引入了泡利不相容原理,在索末菲模型中,引入了泡利不相容原理,认为金属电子气体是费米子(如电子、质子、中认为金属电子气体是费米子(如电子、质子、中子等),遵循费米统计规律。子等),遵循费米统计规律。 传导电子在金属中自由运动,电子与电子之传导电子在金属中自由运动,电子与电子之间有很强的排斥力,电子与离子实之间

10、有很强的间有很强的排斥力,电子与离子实之间有很强的吸引力。吸引力。Sommerfeld自由电子理论认为把离子实自由电子理论认为把离子实的电荷抹散成一个正电荷背景的电荷抹散成一个正电荷背景(这样周期势场就不这样周期势场就不存在了存在了) 好象好象“凝胶凝胶”一样。这种一样。这种“凝胶凝胶”的作的作用纯粹是为了补偿传导电子之间的排斥作用,以用纯粹是为了补偿传导电子之间的排斥作用,以至于使得这些传导电子不至于因为彼此之间很强至于使得这些传导电子不至于因为彼此之间很强的排斥作用而从金属晶体中飞溅出去,这就相当的排斥作用而从金属晶体中飞溅出去,这就相当于于“凝胶凝胶”模型。模型。 索末菲对金属结构的描述

11、:索末菲对金属结构的描述:平均势场中运动平均势场中运动的单电子问题的单电子问题。即忽略电子和离子实之间的相互。即忽略电子和离子实之间的相互作用以及电子与电子之间的相互作用,忽略晶格作用以及电子与电子之间的相互作用,忽略晶格周期场的影响,只考虑一个电子在晶格平均场和周期场的影响,只考虑一个电子在晶格平均场和其它电子的的平均场中的运动。其它电子的的平均场中的运动。 将一个复杂的强关联的多体问题,转化为在将一个复杂的强关联的多体问题,转化为在平均势场中运动的单电子问题。在首先求得单电平均势场中运动的单电子问题。在首先求得单电子的能级的基础上,利用泡利不相容原理,将子的能级的基础上,利用泡利不相容原理

12、,将N个电子填充到这些能级中,获得个电子填充到这些能级中,获得N个电子的基态。个电子的基态。 单电子本征态和本征能量单电子本征态和本征能量 索末菲模型将问题转化为平均势场中运动的索末菲模型将问题转化为平均势场中运动的单电子问题,每个电子所具有的状态就是一定深单电子问题,每个电子所具有的状态就是一定深度势阱中运动的粒子所具有能态,称为单电子本度势阱中运动的粒子所具有能态,称为单电子本征态。征态。 取平均势能为能量零点取平均势能为能量零点, 电子逸出体外相当电子逸出体外相当于在一定深度的势阱中运动的粒子所具有的能量。于在一定深度的势阱中运动的粒子所具有的能量。其运动方程类似于三维无限深势阱中运动的

13、粒子其运动方程类似于三维无限深势阱中运动的粒子: )()()(2222rErrVdxdme)()()()(22222222rErrVdzddyddxdme 通过确定通过确定(x)描述电子的行为的基本方程称为描述电子的行为的基本方程称为定定态态薛定谔方程薛定谔方程。 将电子的势能和边界条件代入,求解薛定谔方将电子的势能和边界条件代入,求解薛定谔方程,就能得到在稳定条件下电子的能量和概率分布。程,就能得到在稳定条件下电子的能量和概率分布。解此方程的边界条件有两种选法:解此方程的边界条件有两种选法:固定边界条件固定边界条件 即电子不能跑到晶体外边去。即电子不能跑到晶体外边去。在固定边界条件下,薛定锷

14、方程的解具有驻波形式,在固定边界条件下,薛定锷方程的解具有驻波形式,而能量的本征值:而能量的本征值: n n为正整数为正整数0)()0(Lnn22)(2Lnmn.3 . 2 . 1sin)(nLnkkxAxn 描写一个电子的量子态需要两个量子数:描写一个电子的量子态需要两个量子数: 能量量子数能量量子数 自旋量子数自旋量子数 )(nk21sm 固定边界条件不利于处理电子在金属中的输运问固定边界条件不利于处理电子在金属中的输运问题,所以我们一般用周期边界条件。题,所以我们一般用周期边界条件。能量本征值:能量本征值: )()(xLxnn 2. 1. 02)(nLnkAexikx2222)2(22n

15、Lmkmn 周期性边界条件周期性边界条件在此条件下薛定锷方程的解是行波解在此条件下薛定锷方程的解是行波解, ,不再是驻波解。不再是驻波解。(此部分可参考第三章相关内容):(此部分可参考第三章相关内容):求解三维薛定谔方程,先进行变量分离,得到三个求解三维薛定谔方程,先进行变量分离,得到三个常微分方程,每一个都只针对一维势阱。求解出常微分方程,每一个都只针对一维势阱。求解出(x)(y)(z)后,后,总的波函数即为三者的简单乘积。总的波函数即为三者的简单乘积。运用周期边界条件:运用周期边界条件:得:得:其中其中n1n2n3为量子数,可取除零以外的任何整数。为量子数,可取除零以外的任何整数。三维情况

16、下自由电子的定态薛定谔方程:三维情况下自由电子的定态薛定谔方程:),(),(),(),(),(),(zyxLzyxzyxzLyxzyxzyLxikzikyikxeeAezyx),(.2. 1. 0222.zyxzzyyxxnnnnLknLknLk这就是色散关系,能量随波矢的变化是抛物线函数这就是色散关系,能量随波矢的变化是抛物线函数。 )(22222222zyxKkkkmkm三维情况下能级:三维情况下能级:对于一个三维晶体,需要的量子数为:对于一个三维晶体,需要的量子数为:(1)波矢波矢k(三个分量(三个分量kx、ky、kz)(2)自旋量子数自旋量子数 给定了给定了 就确定了能级,就确定了能级

17、, 代表同能级上自旋相反的代表同能级上自旋相反的一对电子轨道。一对电子轨道。在波矢空间自由电子的等能面是一个球面在波矢空间自由电子的等能面是一个球面 在波矢空间是一球面方程,不同能量的等能面是一在波矢空间是一球面方程,不同能量的等能面是一系列同心球面。系列同心球面。21smkk)(22222zyxkkkkm费米能级和费米面:费米能级和费米面: 在在T=0K时时,电子的能级与轨道填充时有两个原则电子的能级与轨道填充时有两个原则: 先填能量低的能级先填能量低的能级 服从泡利原理服从泡利原理 在在T=0K时,由时,由N个电子组成的自由电子系个电子组成的自由电子系统,对能量许可态的占有,是从能量最低的

18、统,对能量许可态的占有,是从能量最低的k=0态开始,按能量从低到高,每个态开始,按能量从低到高,每个k态容纳两个电态容纳两个电子,依次填充而得到。由于单电子能级的能量比子,依次填充而得到。由于单电子能级的能量比例于波矢例于波矢k的大小的平方,而且的大小的平方,而且Ek的关系是各的关系是各向同性的,在向同性的,在k空间,占据区最后成为一个球,空间,占据区最后成为一个球,称为称为费米球费米球;费米球半径所对应的;费米球半径所对应的k值称为值称为费费米波矢米波矢,记作,记作kF,费米球的表面作为占据态,费米球的表面作为占据态和未占据态的分界面称为和未占据态的分界面称为费米面费米面,被电子占,被电子占

19、据的最高能级称为据的最高能级称为费米能量费米能量,记作,记作EF。 电子数密度(电子气浓度):单位体积中的平均电子数电子数密度(电子气浓度):单位体积中的平均电子数MZNnmAnkF233在在T=0K时,费米波矢与电子数密度的关系时,费米波矢与电子数密度的关系 费米能量:费米能量:eFFmkE222费米动量:费米动量: 费米速度:费米速度: 费米温度:费米温度: FFkPmkvFFBFFkET 三维时,每个波矢的体积为三维时,每个波矢的体积为 ,每个波矢,每个波矢代表自旋相反的两个轨道,费米球的体积为代表自旋相反的两个轨道,费米球的体积为 ,则:则: ( (轨道数等于总电子数轨道数等于总电子数

20、) ) V-晶体体积晶体体积 -单位体积中的电子数单位体积中的电子数n,又称为电子密度,又称为电子密度 费米波矢由电子气的密度唯一地决定:费米波矢由电子气的密度唯一地决定: VL383)2(334FkVN312)3(nkF312)3(VNkFNLkF33)2(342 相应的费米能:相应的费米能: 也是由电子气的密度唯一地决定。也是由电子气的密度唯一地决定。 费米速度:费米速度:也唯一决定于电子气密度,电子气的密度越大,也唯一决定于电子气密度,电子气的密度越大, 都越大。都越大。FFFkV.3/22222)3(22nmmkEeFF3/12)3(nmmkvFF思考:思考: 晶体膨胀时,费米能级如何

21、变化?晶体膨胀时,费米能级如何变化?如一些典型金属的费米面参数:如一些典型金属的费米面参数:原子价原子价 金属金属 n(cm-3) kF(cm-1) VF(cm/s) EF(eV) 1 Na 2.651022 0.92108 1.07108 3.23 2 Zn 13.101022 1.57108 1.82108 10.90 3 Al 18.061022 1.75108 2.02108 11.63 特别要注意的是,特别要注意的是,EF费米能是费米能是T=0k时电子时电子所固有的动能,它不是热能所固有的动能,它不是热能kBT。室温下电子。室温下电子的热能为的热能为1/40eV0.025eV,费米能

22、比室温下的,费米能比室温下的热能要高得多。热能要高得多。 VF是基态时电子气的最高速度,而不是平是基态时电子气的最高速度,而不是平均速度。费米温度定义为:均速度。费米温度定义为: ,它不是热,它不是热力学温度。力学温度。 若将费米能转换成振动能相当于多高温度下若将费米能转换成振动能相当于多高温度下的热振动能。对于金属,的热振动能。对于金属,TF 104 K 。BFFkET 对于金属而言,由于对于金属而言,由于T EF的能级上,而在的能级上,而在EEF处处留下一些空态。热激发通常发生在费米能级附近。留下一些空态。热激发通常发生在费米能级附近。电子的费米分布函数为:电子的费米分布函数为:FFFEE

23、EfEEEfEEEf, 2/1)(, 2/1)(, 2/1)(不同温度下的费米分布函数不同温度下的费米分布函数 a. kBT=0eV b. kBT=1eV c. kBT=2.5eV随着随着T的增加,的增加,f(E)发生变化的能量范围变宽,但在发生变化的能量范围变宽,但在任何情况下,此能量范围约在任何情况下,此能量范围约在EF附近附近kBT范围内。范围内。此时分布函数与此时分布函数与T=0K时的情形类似,仅在与时的情形类似,仅在与EF非常非常接近的能级上有一些差别。接近的能级上有一些差别。此时电子的平均动能为:此时电子的平均动能为:其中第一项是绝对零度时电子的平均能量,第二项其中第一项是绝对零度

24、时电子的平均能量,第二项是与温度有关的热激发能。是与温度有关的热激发能。22125153FBFETkEE思考:思考:1. 随着温度升高随着温度升高, 费密能如何变化费密能如何变化? 2.为什么价电子的浓度越大为什么价电子的浓度越大, 价电子的平均价电子的平均 动能就越大动能就越大?电子比热容电子比热容因为:因为:所以所以可以转化成:可以转化成:则每个电子对比热的贡献为:则每个电子对比热的贡献为:则摩尔电子比热容:则摩尔电子比热容: FBFTkE22125153FBFETkEE22125153FFTTEE)(22FBVvTTkTECTTTkZNCFBeV)(220FBTZkN220 晶体比热容由

25、两部分构成:晶格振动比热容和电子晶体比热容由两部分构成:晶格振动比热容和电子比热容,总的比热容为两者之和。比热容,总的比热容为两者之和。 常温下晶格振动的摩尔比热容约为常温下晶格振动的摩尔比热容约为25J/(molK2),比电子气对比热容的贡献大得多。因此只需要考虑晶比电子气对比热容的贡献大得多。因此只需要考虑晶格振动对比热容的影响。格振动对比热容的影响。 在高温时,振子的能量近似于在高温时,振子的能量近似于kBT,三维情况下晶,三维情况下晶格振动有三个振子,即格振动有三个振子,即3 kBT,所以,所以 ,即高温,即高温下的比热容是与温度无关的常数,此点与经典理论吻下的比热容是与温度无关的常数

26、,此点与经典理论吻合。合。 金属中自由电子对比热容贡献很小的原因:只有费金属中自由电子对比热容贡献很小的原因:只有费米面附近的少量电子容易被激发而对金属的比热容有米面附近的少量电子容易被激发而对金属的比热容有贡献,绝大多数的电子不能被激发,因而对比热容无贡献,绝大多数的电子不能被激发,因而对比热容无贡献。(理解)贡献。(理解) BaVNkC3 但是在温度但是在温度T比德拜温度低得多的时候,晶格振动比德拜温度低得多的时候,晶格振动的比热容按德拜规律变化,即:的比热容按德拜规律变化,即:(德拜温度:是用经典概念和量子概念来解释比热容的分(德拜温度:是用经典概念和量子概念来解释比热容的分界线。低于德

27、拜温度时,声子被冻结,要用量子统计规律界线。低于德拜温度时,声子被冻结,要用量子统计规律来处理问题;高于德拜温度时,声子全部被激发,可以用来处理问题;高于德拜温度时,声子全部被激发,可以用经典统计规律来处理问题。不同物质有不同的德拜温度,经典统计规律来处理问题。不同物质有不同的德拜温度,一般在几百一般在几百K) 此时,电子气和晶格振动对比热容的贡献之比:此时,电子气和晶格振动对比热容的贡献之比: 34512bTTRCDaV34512DRb(晶格振动的比热容常数)(晶格振动的比热容常数) 2231245TTZCCFDaVeV随着随着T,比值,比值,当,当T10K时,电子比热容时,电子比热容会大于

28、晶格比热容。这说明:只有当温度很会大于晶格比热容。这说明:只有当温度很低时,才需要考虑电子对比热容的影响。低时,才需要考虑电子对比热容的影响。在低温时,金属的摩尔比热容:在低温时,金属的摩尔比热容: 3bTTCV小结:小结:晶体比热容晶体比热容=晶格振动比热容晶格振动比热容+电子比热容电子比热容 电子比热容电子比热容 晶格振动比热容晶格振动比热容 电子比热容只有在低温下才需考虑。电子比热容只有在低温下才需考虑。高温时,高温时, 较低温度时,较低温度时, 低温时,低温时,TCeVDaVDBaVTTCTNkC,33B3NkCV3bTCV3bTTCV 5.4 电导率和欧姆定律电导率和欧姆定律 当外加

29、电场当外加电场E0时,费米球的球心在原点,时,费米球的球心在原点,这时,任何一个量子态这时,任何一个量子态k,都有一个反方向的,都有一个反方向的k态与之对应,处在这两种量子态的电子具态与之对应,处在这两种量子态的电子具有大小相等、方向相反的速度,所以,系统的有大小相等、方向相反的速度,所以,系统的总电流为总电流为0。 当当E 0时,电子的定向运动可看成两个过时,电子的定向运动可看成两个过程:程: 电子在电场电子在电场E的的 作用下作加速运动;作用下作加速运动; 电子由于碰撞而失去定向运动。电子由于碰撞而失去定向运动。 0kxky E 0时,电子在电场的时,电子在电场的作用下沿电场的反方向作用下

30、沿电场的反方向作加速运动:作加速运动:dedt kdedt k这表明,在电场作用下,整这表明,在电场作用下,整个电子分布将在个电子分布将在k空间沿空间沿E的的反方向移动。所以,费米球的球心将偏离原点位置,反方向移动。所以,费米球的球心将偏离原点位置,从而使原来对称的分布偏向一边,这样就有一部分从而使原来对称的分布偏向一边,这样就有一部分电子对电流的贡献不能被抵消,而产生宏观电流。电子对电流的贡献不能被抵消,而产生宏观电流。 另一方面,随着费米球的移动,电子受到金属内部另一方面,随着费米球的移动,电子受到金属内部杂质、缺陷及声子的碰撞,使得电子占据态沿相反方向杂质、缺陷及声子的碰撞,使得电子占据

31、态沿相反方向在在k空间运动;当两种运动达到平衡时,费米球将在空间运动;当两种运动达到平衡时,费米球将在k空空间保持一种稳定的偏心分布,电流达到稳定值。间保持一种稳定的偏心分布,电流达到稳定值。 在没有碰撞时,费米球是匀速平移。设在没有碰撞时,费米球是匀速平移。设电子相邻两次碰撞之间的平均时间间隔为电子相邻两次碰撞之间的平均时间间隔为 ,可求出费,可求出费米球心移动的距离为米球心移动的距离为dedt kk所以,电子的定向漂移速度为所以,电子的定向漂移速度为1demm k =V V电流密度:电流密度:2dnenem jV Vdedt k所以所以2nem 人们对电子电导有两种不同的解释:一种看法认人

32、们对电子电导有两种不同的解释:一种看法认为,金属中的所有自由电子都参与导电过程,而每个为,金属中的所有自由电子都参与导电过程,而每个电子的漂移速度都比较小;另一种看法则认为,并非电子的漂移速度都比较小;另一种看法则认为,并非所有电子都参与传输电流的过程,只有在费米面附近所有电子都参与传输电流的过程,只有在费米面附近的电子才对金属的导电有贡献,但由于在费米面附近的电子才对金属的导电有贡献,但由于在费米面附近的电子具有很高的速度(的电子具有很高的速度(VF 106 m/s的数量级的数量级),所),所以,虽然参与导电的电子数少,其效果与大量的低漂以,虽然参与导电的电子数少,其效果与大量的低漂移速度的

33、电子对电流的贡献相当。严格理论计算结果移速度的电子对电流的贡献相当。严格理论计算结果支持了后一种说法。支持了后一种说法。 只有在费米面附近的电子才对金属的导电有贡献,只有在费米面附近的电子才对金属的导电有贡献,这是由于这是由于Pauli不相容原理的结果。能量比不相容原理的结果。能量比EF低得多的低得多的电子,其附近的状态仍被其他电子所占据,没有空状电子,其附近的状态仍被其他电子所占据,没有空状态来接纳它,因此,这些电子不能吸收电场的能量而态来接纳它,因此,这些电子不能吸收电场的能量而跃迁到较高的能态,对电导作出贡献,能被电场激发跃迁到较高的能态,对电导作出贡献,能被电场激发的只有在费米面附近的

34、一小部分电子。的只有在费米面附近的一小部分电子。0kxky kF右图中右图中和和是关于是关于kykz面对称的这两个区域的电子面对称的这两个区域的电子对电流的贡献相互抵消,只对电流的贡献相互抵消,只有在费米面附近未被补偿部有在费米面附近未被补偿部分的电子才对传导电流有贡分的电子才对传导电流有贡献,这部分电子所占的分数献,这部分电子所占的分数为为11FFFFFkeekkmV这部分电子对电流的贡献为这部分电子对电流的贡献为21FFFFenejnemmVV2Fnem电子的平均自由程:电子的平均自由程: (注意是(注意是VF而不是而不是V)Fv马希森定则马希森定则金属的电阻率金属的电阻率 各种情况造成的

35、对自由电子的散射是电阻各种情况造成的对自由电子的散射是电阻产生的原因。产生的原因。一、晶格振动造成的电子散射。一、晶格振动造成的电子散射。 二、杂质或缺陷造成的电子散射二、杂质或缺陷造成的电子散射 杂质原子导致局域晶杂质原子导致局域晶格畸变,当电子接近格畸变,当电子接近杂质原子时,就会因杂质原子时,就会因为势能为势能PE发生局域的发生局域的突然变化,而受到一突然变化,而受到一个力,个力,F=-d(PE)/dx,因此导致电子散射。因此导致电子散射。杂质原子所诱导的变形可扩展到数个原子距离,具有比较大的杂质原子所诱导的变形可扩展到数个原子距离,具有比较大的散射截面,因此杂质原子可阻碍电子的运动,增

36、大电阻。散射截面,因此杂质原子可阻碍电子的运动,增大电阻。 有两种散射机制:一是仅由热振动造成的散射,有两种散射机制:一是仅由热振动造成的散射,它的平均自由时间它的平均自由时间L,另一种仅从杂质造成的散射,另一种仅从杂质造成的散射,它的平均自由时间它的平均自由时间0。 根据独立事件的基本统计原理,总的散射几率根据独立事件的基本统计原理,总的散射几率1/会等于由晶格热振动散射的几率会等于由晶格热振动散射的几率1/L加上由杂质加上由杂质散射的几率散射的几率1/0。 因为:因为: 所以:所以: 0111L0L马西森定律马西森定律21neme 有效电阻率是两者贡献之和,前一项是原子热有效电阻率是两者贡

37、献之和,前一项是原子热振动而导致的电阻率,这部分与温度有关,常温和振动而导致的电阻率,这部分与温度有关,常温和较高温度下遵循较高温度下遵循T,低温下遵循,低温下遵循 T5,对接近,对接近完美的纯金属晶体而言,这是主要的贡献。完美的纯金属晶体而言,这是主要的贡献。 后一项是,杂质原子碰撞散射造成的电阻率,后一项是,杂质原子碰撞散射造成的电阻率,这这取决于杂质原子取决于杂质原子的浓度,因而与温度无关。的浓度,因而与温度无关。 5.5 热导热导 1.热导率热导率 金属中的热传导由电子气(即导带电子)完成,金属中的热传导由电子气(即导带电子)完成,而在非金属中,热传导是由于晶格振动。而在非金属中,热传

38、导是由于晶格振动。 其中其中为与材料有关的比例常数,称为热导率为与材料有关的比例常数,称为热导率 1)在金属中,热流的速率,)在金属中,热流的速率, ,通过厚度为,通过厚度为 x的薄截面正比例于温度梯度的薄截面正比例于温度梯度T/x及其截面及其截面 面积面积A。dtdQQ xTAQ 将上式与电流将上式与电流I的欧姆定律相比较:的欧姆定律相比较: 可见,热流的驱动力是温度梯度,而电流的驱动力可见,热流的驱动力是温度梯度,而电流的驱动力为电势的梯度,即电场。在金属中,电子参与电荷与热为电势的梯度,即电场。在金属中,电子参与电荷与热的传输过程,其相关系数分别为的传输过程,其相关系数分别为与与,这两个

39、系数可由,这两个系数可由WF定律联系起来。定律联系起来。 xTAQxVAI2FneEm223BFnkETKmjxBqxyz0EH 将一通电的导体放在磁场中,若磁场方向与电流将一通电的导体放在磁场中,若磁场方向与电流方向垂直,那么,在第三个方向上会产生电位差,这方向垂直,那么,在第三个方向上会产生电位差,这种现象称为种现象称为Hall效应。效应。正电荷正电荷q受的力:受的力:HqFEvB稳定时,稳定时,z方向方向F00HqEvBHEvB5.6 霍尔效应霍尔效应又由于又由于xjnqvxjvnq 1HxHxEvBj BR j Bnq1HRnq Hall系数系数对于自由电子:对于自由电子:q =e,所

40、以,所以,10HRne 其中,其中,n为单位体积中的载流子数,即载流子浓度。由为单位体积中的载流子数,即载流子浓度。由Hall系数的测量不仅可以判断载流子的种类(带正电还系数的测量不仅可以判断载流子的种类(带正电还是带负电),而且还是测量载流子浓度的重要手段。是带负电),而且还是测量载流子浓度的重要手段。载流子浓度越低,载流子浓度越低,Hall系数就越大,系数就越大,Hall效应就越明显。效应就越明显。 对大多数金属而言,霍尔系数是负值,说明是电子导对大多数金属而言,霍尔系数是负值,说明是电子导电。而电。而In, Al等少数金属霍尔系数是正值的情形,需由能等少数金属霍尔系数是正值的情形,需由能

41、带理论说明。带理论说明。5.7功函数和接触势差功函数和接触势差一一.功函数功函数 电子逸出金属表面至少需要从外界得到的能量。电子逸出金属表面至少需要从外界得到的能量。电子在势阱内电子在势阱内,势阱深度为势阱深度为E0,费米能级为,费米能级为EF, 电子离开金属至少需要从外界得到电子离开金属至少需要从外界得到W= E0 EF ,称逸出功。(即真空能级与费米能级之差)称逸出功。(即真空能级与费米能级之差) 三种常见的电子发射方式:三种常见的电子发射方式:热电子发射;光致发射(光电效应);场致发射热电子发射;光致发射(光电效应);场致发射l热电子发射热电子发射:电子吸收外界提供的热能而逸出:电子吸收

42、外界提供的热能而逸出金属的现象。金属的现象。 )/(2TkWBeATj其中其中A为常数,因金属不同而不同为常数,因金属不同而不同 当入射光的频率当入射光的频率 时,才能发生光电效时,才能发生光电效应。应。 是否发生光电效应取决于入射光的频率,是否发生光电效应取决于入射光的频率,发射电子的数目多少则取决于入射光的强度。发射电子的数目多少则取决于入射光的强度。0vv 0hvW l光电效应光电效应: 电子吸收外界入射光的能量而逸出电子吸收外界入射光的能量而逸出金属的现象。金属的现象。l场致发射场致发射: 施加强电场施加强电场F后,在金属外的势能,变成了后,在金属外的势能,变成了一条斜直线,一条斜直线

43、, 即电子通过强电场在即电子通过强电场在金属表面形成了一个三角形的势垒,电场越强,金属表面形成了一个三角形的势垒,电场越强,势垒越狭窄。按照量子力学的观点,能量低于势势垒越狭窄。按照量子力学的观点,能量低于势能最大值的电子,也有可能从金属穿过势垒发射能最大值的电子,也有可能从金属穿过势垒发射出来。出来。 eFxExV0W二二接触电势差接触电势差:l()两块不同的金属()两块不同的金属和和接触,或用导线联接触,或用导线联结时,两块金属会彼此带电,产生不同的电势,结时,两块金属会彼此带电,产生不同的电势,称为接触电势。称为接触电势。l()推导接触电势差:()推导接触电势差: 每秒从金属每秒从金属单

44、位面积逸出电子数:单位面积逸出电子数: 每秒从金属每秒从金属单位面积逸出电子数:单位面积逸出电子数: 如果如果W2W1,则,则j10, V20。附加静电势能:。附加静电势能:e V1, e V2,发射的电子数分别变为:,发射的电子数分别变为:)/(211TkWBeATj)/(222TkWBeATj)/()(2111TkeVWBeATj)/()(2222TkeVWBeATj 平衡时平衡时 j1=j2, 由此得:由此得: 所以接触电势差:所以接触电势差: 此式表明:接触电势差来源于两块金属的此式表明:接触电势差来源于两块金属的逸出功不同。逸出功是真空能级与费米能级之逸出功不同。逸出功是真空能级与费

45、米能级之差,所以,接触电势差来源于两块金属的费米差,所以,接触电势差来源于两块金属的费米能级不一样高。能级不一样高。2211eVWeVW)(11221WWeVV 电子从费米能级高的金属流到费米能级低的电子从费米能级高的金属流到费米能级低的金属,达到平衡时,两块金属的费米能级达到金属,达到平衡时,两块金属的费米能级达到同一高度。同一高度。自由电子模型的局限性自由电子模型的局限性一、自由电子论的成功方面一、自由电子论的成功方面 电子热容量电子热容量 Pauli顺磁顺磁 WiedemannFranz定律定律 热电子发射与接触电势热电子发射与接触电势 金属自由电子论虽然非常简单,但在理解金属,金属自由

46、电子论虽然非常简单,但在理解金属,尤其是一价金属的物理本质方面,已证明是相当成功尤其是一价金属的物理本质方面,已证明是相当成功的。主要表现在以下几方面:的。主要表现在以下几方面:二、自由电子论的局限性二、自由电子论的局限性 自由电子模型毕竟过于简单,在自由电子论中,自由电子模型毕竟过于简单,在自由电子论中,不同金属间的差异仅仅归结于电子密度不同金属间的差异仅仅归结于电子密度n和功函数和功函数W的的不同,而完全不考虑电子与晶格之间的相互作用,因不同,而完全不考虑电子与晶格之间的相互作用,因而对有些实验结果无法解释:而对有些实验结果无法解释: 根据自由电子论,金属的电导率根据自由电子论,金属的电导

47、率电子密度电子密度n,但,但 为什么电子密度较大的二价金属(如为什么电子密度较大的二价金属(如Be、Mg、Zn、 Cd等)和三价金属(如等)和三价金属(如Al、In等)的电导率反而低等)的电导率反而低 于一价金属(如于一价金属(如Cu、Ag、Au等);等); 自由电子论无法解释为什么有些金属的自由电子论无法解释为什么有些金属的Hall系数会系数会 大于大于0(如(如Al、In、Zn、Cd等);等); 自由电子论不能解释为什么电子的平均自由程自由电子论不能解释为什么电子的平均自由程 会比会比 相邻原子间距大得多(如相邻原子间距大得多(如Cu:300K时,时,3 108m; 而而4.2K时,时,

48、3 103m );); 自由电子论不能解释为什么固体材料会分成导体、半自由电子论不能解释为什么固体材料会分成导体、半 导体和绝缘体;导体和绝缘体; 自由电子论认为金属费米面的形状为球面,但是,实自由电子论认为金属费米面的形状为球面,但是,实 验结果表明,在通常情况下,金属费米面的形状都不验结果表明,在通常情况下,金属费米面的形状都不 是球面。是球面。 以上所列的自由电子论的这些困难以及其他困难,以上所列的自由电子论的这些困难以及其他困难,可通过考虑电子与晶格之间的相互作用的更复杂的理论可通过考虑电子与晶格之间的相互作用的更复杂的理论来解决。来解决。(a) 已知自由电子状态密度已知自由电子状态密

49、度 ,由此,由此导出绝对零度下金属自由电子费米能量的表达式;导出绝对零度下金属自由电子费米能量的表达式;(b) 一个简单立方点阵的单价金属,已知点阵常数一个简单立方点阵的单价金属,已知点阵常数a = 3,每个原子只贡献一个传导电子试计算费,每个原子只贡献一个传导电子试计算费米能量、费米波矢、费米温度及费米面上电子的米能量、费米波矢、费米温度及费米面上电子的波长;波长;(c) 计算简单立方点阵第一布里渊区中电子填充状态计算简单立方点阵第一布里渊区中电子填充状态所占的分数所占的分数例题一:例题一:解解:(a)当当T=0K时,此时电子气体处于基态。时,此时电子气体处于基态。所以:所以:FEdEEgE

50、fn0)()(FFTEEEEEf, 0, 1)(lim0(b)电子浓度:电子浓度:费米波矢:费米波矢:费米能量:费米能量:费米温度:费米温度:费米面上的波长:费米面上的波长:(c)简单立方点阵的第一布里渊区是一个边长为简单立方点阵的第一布里渊区是一个边长为2/ a的立方体,其体积为的立方体,其体积为:电子浓度:电子浓度: 费米球的半径为:费米球的半径为:费米球的体积:费米球的体积:第一布里渊区中被电子占据的状态所占的分数为:第一布里渊区中被电子占据的状态所占的分数为: 为什么说绝对零度时和常温下电子的平均动能十为什么说绝对零度时和常温下电子的平均动能十分相近分相近? 为什么价电子的浓度越大为什

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(经典电子气体模型-特鲁德模型假设和理论课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|