1、概 率1在具体情境中,了解概率的意义,运用列举法(包括列表、画树形图)计算简单事件发生的概率2知道大量重复试验时的频率可作为事件发生概率的估计值大纲要求1事件的分类必然事件不可能事件随机事件2概率可能性大小(1)概念:表示一个事件发生的_的数n 表示所有等可能出现的结果的次数)(2)公式:P(A)_(m 表示试验中事件 A 出现的次数,知识回顾(3)性质: 101树形图法列表法P(不可能事件)_;P(必然事件)_;_P(随机事件)_.(4)计算简单事件发生的概率的方法:_、_.3用频率估算概率通过大量的_时,频率可视为事件发生概率的估计值重复试验01在一个装有红球和白球的口袋中,摸出一个球为黑
2、球是()CCA随机事件C不可能事件B必然事件D无法确定2在一个不透明的口袋中,装有 4 个红球 3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()3从 1,2,3 三个数中,随机抽取两个数相乘,积是正数的概率是()B4小勇抛一枚质地均匀的硬币,第一次正面向上,他第二次再抛这枚硬币,正面向上的概率是_5在英语句子“Wish you success!”(祝你成功!)中,任选一个字母,这个字母为“s”的概率是_考点 1事件分类、对概率意义的理解1(2010 年广东湛江)下列成语中描述的事件必然发生的是()BBA水中捞月C守株待兔B瓮中捉鳖D拔苗助长2“抛一枚均匀硬币,落地后正面
3、朝上”这一事件是()A必然事件C确定事件B随机事件D不可能事件考场题型考点 2求事件发生的概率2112(2,2)(1,2)(1,2)1(2,1)(1,1)(1,1)1(2,1)(1,1)(1,1)解:(1)用列表法表示(x,y)所有可能出现的结果如下表:(2)(x ,y) 所有可能出现的结果共有 9 种情况,使分式3(2012 年广东肇庆)从 1 名男生和 2 名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:(1)抽取 1 名,恰好是男生;(2)抽取 2 名,恰好是 1 名女生和 1 名男生解:(1)有 1 名男生和 2 名女生,(2)画树状图如图 D52.图 D52共有 6
4、 种等可能的结果,抽取 2 名,恰好是 1 名女生和 1名男生有 4 种情况,4(2011 年广东湛江)一个口袋中有 4 个小球,这 4 个小球分别标记为 1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为 2 的小球的概率;(2)随机摸取一个小球,然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为 3 的概率解:(1)显然,随机摸取一个小球,恰好摸到标号为 2 的小(2)所有可能的情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)5
5、(2011 年广东肇庆)如图 721 是一个转盘,转盘分成8 个相同的扇形,颜色分为红、绿、黄三种指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(当指针指向两个扇形的交线时,当作指向右边的扇形)求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色图 721(1)指针指向红色的结果有 2 个,(2)指针指向黄色或绿色的结果有 336(个),6(2012 年广东广州)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值分别为7,1,3,乙袋中的三张卡片所标的数值分别为2,1,6.先从甲袋中随机取出一张卡片,用 x 表示取出
6、的卡片上的数值,再从乙袋中随机取出一张卡片,用 y 表示取出卡片上的数值,把 x,y 分别作为点 A 的横坐标和纵坐标(1)用适当的方法写出点 A(x,y)的所有情况;(2)求点 A 落在第三象限的概率7132(7,2)(1,2)(3,2)1(7,1)(1,1)(3,1)6(7,6)(1,6)(3,6)解:(1)列表如下:点 A(x,y)共 9 种情况.(2)点 A 落在第三象限有(7,2),(1,2),共 2 种情况,考点 3判断游戏是否公平7(2010 年广东中山)分别把带有指针的圆形转盘 A,B 分成 4 等份、3 等份的扇形区域,并在每一小区域内标上数字,如图 722.欢欢、乐乐两人玩
7、转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘(1)试用列表或画树形图的方法,求欢欢获胜的概率;123511235224610336915(2)请问:这个游戏规则对欢欢、乐乐双方公平吗?试说明理由图 722解:(1)列表如下:由列表,可知:两个转盘上数字之积共有 12 种等可能的结果,其中指针所指两区域的数字之积为奇数(欢欢获胜)共有 6 种结果(2)由(1),可得指针所指两区域的数字之积为偶数(乐乐获胜)共有 6 种结果故这个游戏规则对欢欢、乐乐双方公平
8、另解:画树形图如图 D53.图 D53其他过程与列表法的解答过程相同8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”现从 1,2,3,4 这 4 个数字中任取 3 个数,组成无重复数字的三位数(1)请画出树状图,并写出所有可能得到的三位数;(2)甲、乙两人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜你认为这个游戏公平吗?试说明理由解:(1)树状图如图 D54.图 D54所有得到的三位数有 24 个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412 , ,413,421,423,431,432.(2)这个游戏不公平理由如下:因为组成的三位数中是“伞数”的有132,142,143,231,241,243,341,342,共有 8 个,这个游戏不公平规律方法:游戏公平问题实际上是概率相等问题人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。