1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年广东省广州市中考数学三年真题模拟 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的有( ) 两点之间的所有连线中,线段最短;相
2、等的角叫对顶角;过一点有且只有一条直线与已知直线平行;若ACBC,则点C是线段AB的中点; 在同一平面内,经过一点有且只有一条直线与已知直线垂直A1个B2个C3个D4个2、已知和是同类项,那么的值是( )A3B4C5D63、下列命题错误的是( )A所有的实数都可用数轴上的点表示B两点之间,线段最短C无理数包括正无理数、0、负有理数D等角的补角相等4、由抛物线平移得到抛物线则下列平移方式可行的是( )A向左平移4个单位长度B向右平移4个单位长度C向下平移4个单位长度D向上平移4个单位长度5、若,则下列分式化简正确的是( )ABCD6、用配方法解一元二次方程x234x,下列配方正确的是( )A(x
3、2)22B(x2)27C(x2)21D(x2)217、定义一种新运算:,则方程的解是( )A,B,C,D,8、已知,且,则的值为( )A1或3B1或3C1或3D1或39、已知,则代数式的值是( )A3B3C9D1810、下列各点在反比例的图象上的是( )A(2,3)B(2,3)C(3,2)D(3,2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABCDEF,如果AC2,CE3,BD1.5,那么BF的长是_ 线 封 密 内 号学级年名姓 线 封 密 外 2、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新
4、高,将数据“4570000”用科学记数法表示为_3、现有一列数,其中,且满足任意相邻三个数的和为相等的常数,则的值为_4、如图,BD是ABC的角平分线,E是AB上的中点,已知ABC的面积是12cm2,BC:AB19:17,则AED面积是 _5、近似数精确到_位三、解答题(5小题,每小题10分,共计50分)1、已知的立方根是-3,的算术平方根是4,c是的整数部分,求的平方根2、已知:在中,点在边上,过点作,点在边上,点在的延长线上,联结(1)如图1,当时,求证:;(2)如图2,当时,求线段的长3、解下列不等式(组),并把解集在数轴上表示出来;(1);(2);(3);(4)4、已知过点的抛物线与坐
5、标轴交于点A,C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为_5、已知:如图在ABC中,BAC90,ABAC,点E在边BC上,EAD90,ADAE求证: 线 封 密 内 号学级年名姓 线 封 密 外 (1)ABEACD;(2)如果点F是DE的中点,联结AF、CF,求证:AFCF-参考答案-一、单选题1、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解【详解】解:两点之间的所有连线中,线段最短,正确;相等的角不一定是对顶角,但对顶角相等,故本小题错误;过直线外一点有且仅有一条直线
6、与已知直线平行,故本小题错误;若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有共2个故选:B【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键2、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键3、C【分析】根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项
7、判断即可求解【详解】解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;B、两点之间,线段最短,该命题正确,故本选项不符合题意;C、0不是无理数,该命题错误,故本选项符合题意;D、等角的补角相等,该命题正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键4、A【分析】 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.【详解】解:抛物线向
8、左平移4个单位长度可得: 故A符合题意;抛物线向右平移4个单位长度可得:故B不符合题意;抛物线向下平移4个单位长度可得: 故C不符合题意;抛物线向上平移4个单位长度可得: 故D不符合题意;故选A【点睛】本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.5、C【分析】由,令,再逐一通过计算判断各选项,从而可得答案.【详解】解:当,时,故A不符合题意;,故B不符合题意;而 故C符合题意;故D不符合题意故选:C【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.6、D【分析】根据题意将方程常数项移到右边,未知项
9、移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案【详解】,整理得:,配方得:,即故选:D【点睛】本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键7、A【分析】根据新定义列出关于x的方程,解方程即可【详解】解:由题意得,方程,化为,整理得, 线 封 密 内 号学级年名姓 线 封 密 外 解得:,故选A【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键8、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值【详解】解:, ,x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1故选:A【
10、点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键9、C【分析】由已知得到,再将变形,整体代入计算可得【详解】解:,=9故选:C【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用10、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断【详解】解:2(3)6,236,3(2)6, 而326,点(2,3),(2,3)(3,2),不在反比例函数图象上,点(3,2)在反比例函数图象上故选:C【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xyk二、填空
11、题 线 封 密 内 号学级年名姓 线 封 密 外 1、【分析】根据平行线分线段成比例定理解答即可【详解】解:ABCDEF,AC2,CE3,BD1.5,即,解得:BF,故答案为:【点睛】本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键2、4.57106【分析】将一个数表示成a10n,1a10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案【详解】解:根据科学记数法的定义,4570000=4.57106,故答案为:4.57106【点睛】本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式3、-2690【分析】先根据任意相邻三个数的和为相等的常数可推出x1=x
12、4=x7=x2020=x7=5,x2=x5=x8=x2021=-3,x3=x6=x9=x333=x2019=-6,由此可求x1+x2+x3+x2021的值【详解】解:x1+x2+x3=x2+x3+x4,x1=x4,同理可得:x1=x4=x7=x2020=x7=5,x2=x5=x8=x2021=-3,x3=x6=x9=x333=x2019=-6,x1+x2+x3=-4,2021=6733+2, x1+x2+x3+x2021=(-4)673+(5-3)=-2692+2=-2690故答案为:-2690【点睛】本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规
13、律,并进行推导得出答案4、【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据角平分线的性质得出DF=DG,再由三角形面积计算即可得答案【详解】解:作DGAB,交AB的延长线于点D,作DFBC,BD是ABC的角平分线,DF=DG,BC:AB19:17,设DF=DG=h,BC=19a,AB=17a,ABC的面积是12cm2,36ah=24,ah=,E是AB上的中点,AE=,AED面积=h=(cm2)故答案为:cm2【点睛】本题考查了根据角平分线的性质和三角形面积的计算,做题的关键是掌握角平分线的性质5、百【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的
14、有效数字【详解】解:104是1万,6位万位,0为千位,5为百位,近似数6.05104精确到百位;故答案为百【点睛】此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字最后一位所在的位置就是精确度三、解答题1、4【分析】根据的立方根是-3,可求得a的值;根据的算术平方根是4及已经求得的a的值,可求得b的值;再由c是的整数部分可求得c的值,则可求得的值,从而求得结果【详解】的立方根是-3 线 封 密 内 号学级年名姓 线 封 密 外 的算术平方根是4即c是的整数部分,且的平方根为4【点睛】本题考查了平方根、算术平方根、立方根
15、等概念,熟练掌握这些定义是关键2、(1)见解析(2)【分析】(1)根据直角三角形的性质即定义三角形的性质得出FBA=BFC,进而得到FC=2AC,由FBA=BFC,结合FEB=FBC=90,即可判定FEBCBF,根据相似三角形的性质即可得解;(2)过点A作AHBC于点H,过点B作BMCF于点M,根据等腰三角形的性质得到CH=4,根据勾股定理得到AH=3,根据锐角三角函数得到CM=,进而得到AM=,根据FEA=BMC=90,FAE=BAM,即可判定AEFAMB,根据相似三角形的性质求解即可(1),,,即是的中点,在与中,(2)如图,过点作,垂足为, 线 封 密 内 号学级年名姓 线 封 密 外
16、,在中,由勾股定理得,过点作,垂足为,即,在中,由勾股定理得,在与中,【点睛】此题考查了相似三角形的判定与性质、等腰三角形的性质、勾股定理,熟练掌握相似三角形的判定与性质并作出合理的辅助线是解题的关键3、(1),数轴见解析(2),数轴见解析(3)-1x2,数轴见解析(4)x-10,数轴见解析【分析】(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在
17、数轴上表示;【小题1】解:, 线 封 密 内 号学级年名姓 线 封 密 外 去括号得:,移项合并得:,解得:,在数轴上表示为:【小题2】,去分母得:,去括号得:,移项合并得:,在数轴上表示为:【小题3】,由得:x-1,由得:x2,不等式组的解集为:-1x2,在数轴上表示为:【小题4】,由得:x-4,由得:x-10,不等式组的解集为:x-10,在数轴上表示为:【点睛】此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键4、或【分析】运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过
18、点M作MGy轴于G,则MGA=90,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可【详解】把点B (4,1)代入,得: 抛物线的解析式为 线 封 密 内 号学级年名姓 线 封 密 外 令x=0,得y=3,A(0,3)令y=0,则解得, C(3,0)AC=B(4,1)BC=,AB= 为直角三角形,且,过点M作MGy轴于G,则MGA=90,设点M的横坐标为x,由M在y轴右侧可得x0,则MG=x,PMMA,ACB=90,AMP=ACB=90,如图,当MAP=CBA时,则MAPCBA, 同理可得, AG=MG=x,则M(x,3+x),把M(x,3+x)代入y=x
19、2-x+3,得x2-x+3=3+x,解得,x1=0(舍去),x2=,3+x=3+ M(,);如图,当MAP=CAB时,则MAPCAB,同理可得,AG=3MG=3x,则P(x,3+3x),把P(x,3+3x)代入y=x2-x+3, 线 封 密 内 号学级年名姓 线 封 密 外 得x2-x+3=3+3x,解得,x1=0(舍去),x2=11,M(11,36),综上,点M的坐标为(11,36)或(,)【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用5、(1)见解析(2)见解析【分析】(1)根据SAS证明即可;(2)由BAC90,ABAC,得到B=ACB=,根据全等三角形的性质得到ACD=B=,求出DCE=,利用直角三角形斜边中线的性质得到DE=2CF,DE=2AF,由此得到结论(1)证明:BAC90,EAD90,BACEAD,BAC+CAEEAD+CAE,即BAE=CAD,在ABE和ACD中,ABEACD(SAS);(2)证明:BAC90,ABAC,B=ACB=,ABEACD,ACD=B=,BCD=,DCE=,点F是DE的中点,DE=2CF,EAD90,DE=2AF,AFCF【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,直角三角形斜边中线等于斜边一半的性质,熟记各知识点并综合应用是解题的关键