1、2020-2021学年山东省济宁市高一(下)期末数学试卷(A卷)一、单项选择题(共8小题,每小题5分,共40分). 1设复数zi(i为虚数单位),则()A1+iB1+iC1iD1i2已知等腰梯形ABCD,现绕着它的较长底CD所在的直线旋转一周,所得的几何体为()A一个圆台、两个圆锥B一个圆柱、两个圆锥C两个圆台、一个圆柱D两个圆柱、一个圆台3如图,已知,用,表示,则等于()ABCD4我国古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A134石B169石C338石D1365石5已知,是两个不同
2、的平面,l,m,n是三条不同的直线,下列条件中,可以得到l的是()Alm,ln,m,nBlm,mC,lDlm,m6一个圆锥的侧面展开图是圆心角为,弧长为2的扇形,则该圆锥的体积为()ABCD7“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中都做出了相当好的成绩若将18拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()ABCD8购买商品房时,住户对商品房的户型结构越来越重视,因此某商品房调查机构随机抽取n名市民,针
3、对其居住的户型结构和满意度进行了调查,如图1调查的所有市民中四居室共200户,所占比例为,二居室住户占如图2是用分层抽样的方法从所有被调查的市民中,抽取10%组成一个样本,根据其满意度调查结果绘制成的统计图,则下列说法正确的是()A样本容量为70B样本中三居室住户共抽取了25户C样本中对三居室满意的有15户D根据样本可估计对四居室满意的住户有70户二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分9有一组样本数据x1,x2,xn,由这组数据得到的新样本数据y1,y2,yn,其中yixi+t(其中
4、i1,2,n,t为非零常数),则()A两组样本数据的样本平均数相同B两组样本数据的样本方差相同C两组样本数据的样本中位数相同D两组样本数据的样本极差相同10设复数z的共轭复数为,i为虚数单位,则下列命题正确的是()AB是纯虚数C若,则|z|1D若|zi|1,则|z|的最大值为211从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是()A2个球都是红球的概率为B2个球不都是红球的概率为C至少有1个红球的概率为D2个球中恰有1个红球的概率为12如图,在正方体ABCDA1B1C1D1中,E是棱A1B1的中点,P是线段A1C(不含端点)上的一个动点,那么在
5、点P的运动过程中,下列说法中正确的有()A存在某一位置,使得直线PE和直线BB1相交B存在某一位置,使得BC平面AEPC点A1与点B1到平面PBE的距离总相等D三棱锥C1PBE的体积不变三、填空题:本大题共4小题,每小题5分,共20分13为做好“新冠肺炎”疫情防控工作,济南市各学校坚持落实“双测温两报告”制度,以下是某宿舍6名同学某日上午的体温记录:36.3,36.1,36.4,36.7,36.5,36.6(单位:),则该组数据的第80百分位数为 14已知向量,写出一个与向量方向相反的向量 (用数字作答)15某个微信群在某次进行的抢红包活动中,若某人所发红包的总金额为15元,被随机分配为3.5
6、0元,4.75元,5.37元,1.38元共4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,则甲、乙二人抢到的金额之和不低于8元的概率为 16农历五月初五是中国的传统节日端午节,民间有吃粽子的习俗,粽子又称“粽粒”,故称“角黍”同学们在劳动课上模拟制作“粽子”,如图(1)的平行四边形形状的纸片是由六个边长为1的正三角形组成的,将它沿虚线折起来,可以得到如图(2)的粽子形状的六面体,则该六面体的体积为 ;若该六面体内有一球,则该球的体积的最大值为 四、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17“自媒体”是指普通大众通过网络等途径向外发布他们本身的事实和新闻的传播
7、方式某“自媒体”作者2020年度在“自媒体”平台A上发布了200条事实和新闻,现对其点击量进行统计,如表格所示:点击量(万次)0,1(1,50(50,100(100,200条数201006020()现从这200条事实和新闻中采用分层抽样的方式选出10条,求点击量超过50万次的条数;()为了鼓励作者,平台A在2021年针对每条事实和新闻推出如下奖励措施:点击量(万次)0,1(1,50(50,100(100,200奖金(元)02005001000若该作者在2021年5月份发布了20条事实和新闻,请估计其可以获得的奖金数18在ABC中,内角A,B,C所对的边分别为a,b,c,已知a4,B30(1)求
8、sinC的值;(2)且ADC120,求正实数的值19如图,在三棱柱ABCA1B1C1中,F为AC中点(1)求证:AB1平面BFC1(2)若此三棱柱为正三棱柱,且,求FBC1的大小;20某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间40,50),50,60),80,90),90,100()求频率分布直方图中a的值;()估计该中学学生对个性化作业评分不低于70的概率;()从评分在40,60)的受访学生中,随机抽取2人,求此2人评分都在50,60)的概率21如图,在四棱锥PABCD中,底面ABC
9、D为正方形,PA底面ABCD,PAAB4,E为PB的中点,F为线段BC上的点,且BFBC(1)求证:平面AEF平面PBC;(2)求点F到平面PCD的距离22某中学在2020年高考分数公布后对高三年级各班的成绩进行分析经统计,某班有50名同学,总分都在区间600,700内,将得分区间平均分成5组,统计频数、频率后,得到了如图所示的“频率分布”折线图(1)请根据频率分布折线图,画出频率分布直方图,并根据频率分布直方图估计该班级的平均分;(2)经过相关部门的计算,本次高考总分大于等于680的同学可以获得高校T的“强基计划”入围资格高校T的“强基计划”校考分为两轮第一轮为笔试,所有入围同学都要参加,考
10、试科目为数学和物理,每科的笔试成绩从高到低依次有A+,A,B,C四个等级,两科中至少有一科得到A+,且两科均不低于B,才能进入第二轮,第二轮得到“通过”的同学将被高校T提前录取已知入围的同学参加第一轮笔试时,总分高于690分的同学在每科笔试中取得A+,A,B,C的概率分别为;总分不超过690分的同学在每科笔试中取得A+,A,B,C的概率分别为;进入第二轮的同学,若两科笔试成绩均为A+,则免面试,并被高校T提前录取;若两科笔试成绩只有一个A+,则要参加面试,总分高于690分的同学面试“通过”的概率为,总分不超过690分的同学面试“通过”的概率为,面试“通过”的同学也将被高校T提前录取若该班级考分
11、前10名都已经报考了高校T的“强基计划”,且恰有2人成绩高于690分求总分高于60分的某位同学没有进入第二轮的概率P1;该班恰有两名同学通过“强基计划”被高校T提前录取的概率P2参考答案一、单项选择题(共8小题,每小题5分,共40分). 1设复数zi(i为虚数单位),则()A1+iB1+iC1iD1i【分析】根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解解:zi,i(i+1)1+i故选:B2已知等腰梯形ABCD,现绕着它的较长底CD所在的直线旋转一周,所得的几何体为()A一个圆台、两个圆锥B一个圆柱、两个圆锥C两个圆台、一个圆柱D两个圆柱、一个圆台【分析】先考虑两个全等
12、的直角三角形分别绕它的一条直角边所在的直线旋转一周形成的几何体,再考虑一个矩形绕它的一边所在的直线旋转一周形成的几何体,即可得到答案解:等腰梯形的底CD较长,绕其所在的直线旋转一周,相当于两个全等的直角三角形分别绕它的一条直角边所在的直线旋转一周,形成两个圆锥,还有一个矩形绕它的一边所在的直线旋转一周,形成一个圆柱,所以所得的几何体为一个圆柱、两个圆锥故选:B3如图,已知,用,表示,则等于()ABCD【分析】利用向量的加法法则和平面向量基本定理可以求解解:,+(),故选:C4我国古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内
13、夹谷28粒,则这批米内夹谷约为()A134石B169石C338石D1365石【分析】根据254粒内夹谷28粒,可得比例,即可得出结论解:由题意,这批米内夹谷约为1534169石,故选:B5已知,是两个不同的平面,l,m,n是三条不同的直线,下列条件中,可以得到l的是()Alm,ln,m,nBlm,mC,lDlm,m【分析】对于A,l与相交、平行或l;对于B,l与相交、平行或l;对于C,l与相交、平行或l;对于D,由线面垂直的判定定理得l解:由,是两个不同的平面,l,m,n是三条不同的直线,知:对于A,lm,ln,m,n,则l与相交、平行或l,故A错误;对于B,lm,m,则l与相交、平行或l,故
14、B错误;对于C,l,则l与相交、平行或l,故C错误;对于D,lm,m,则由线面垂直的判定定理得l,故D正确故选:D6一个圆锥的侧面展开图是圆心角为,弧长为2的扇形,则该圆锥的体积为()ABCD【分析】设圆锥的母线长为l,底面半径为r,由弧长公式求出l,利用弧长等于底面圆的周长,求出r,由勾股定理求出圆锥的高,利用圆锥的体积公式求解即可解:设圆锥的母线长为l,底面半径为r,由弧长公式可得,解得l3,又2r2,解得r1,所以圆锥的高,则该圆锥的体积为故选:A7“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题它是1742
15、年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中都做出了相当好的成绩若将18拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()ABCD【分析】将18拆成两个正整数的和,所有的和式共有17个,利用列举法求出其中,事件“所拆成的和式中,加数全部为质数”所包含的基本事件有4个,由此能求出拆成的和式中,加数全部为质数的概率解:将18拆成两个正整数的和,所有的和式共有17个,其中,事件“所拆成的和式中,加数全部为质数”所包含的基本事件有:5+13、7+11、13+5、11+7,共4个,因此所求概率为故选:D8购买商品房时,住户对商品房的户型结构越来越重视,因此
16、某商品房调查机构随机抽取n名市民,针对其居住的户型结构和满意度进行了调查,如图1调查的所有市民中四居室共200户,所占比例为,二居室住户占如图2是用分层抽样的方法从所有被调查的市民中,抽取10%组成一个样本,根据其满意度调查结果绘制成的统计图,则下列说法正确的是()A样本容量为70B样本中三居室住户共抽取了25户C样本中对三居室满意的有15户D根据样本可估计对四居室满意的住户有70户【分析】利用扇形统计图、条形统计图的性质,分别判断各选项即可解:对于A,图1调查的所有市民中四居室共200户,所占比例为,市民共有600户,用分层抽样的方法从所有被调查的市民中,抽取10%组成一个样本,样本容量为n
17、60010%60,故A错误;对于B,样本中三居室住户共抽取了:600(1)10%30户,故B错误;对于C,样本中对三居室满意的有:600(1)10%50%15户,故C正确;对于D,根据样本可估计对四居室满意的住户有:20020%40户,故D错误故选:C二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分9有一组样本数据x1,x2,xn,由这组数据得到的新样本数据y1,y2,yn,其中yixi+t(其中i1,2,n,t为非零常数),则()A两组样本数据的样本平均数相同B两组样本数据的样本方差相同C两
18、组样本数据的样本中位数相同D两组样本数据的样本极差相同【分析】利用平均数、中位数、标准差和极差的定义直接判断即可解:样本数据x1,x2,xn,新样本数据y1,y2,yn,其中yixi+t;对于A,第一组数据的平均数为,则第二组数据的平均数为+t,平均数不同;对于B,第一组数据的方差为s2,则第二组数据的方差也是s2,方差相同;对于C,第一组数据的中位数是x,则第二组数据的中位数是x+t,中位数不同;对于D,第一组数据的极差为xmaxxmin,第二组数据的样本极差是(xmaxt)(xmint)xmaxxmin,极差相同故选:BD10设复数z的共轭复数为,i为虚数单位,则下列命题正确的是()AB是
19、纯虚数C若,则|z|1D若|zi|1,则|z|的最大值为2【分析】根据已知条件,结合复数的运算法则,以及复数模公式和复数的几何意义,即可求解解:设za+bi,a,bR,则abi,故A选项正确,当z为实数, 是实数,故B选项错误,若,则1,故C选项错误,若|zi|1,设za+bi,a,bR,即a2+(b1)21,则|z|表示圆上的点到原点的距离,其最大值为2,故D选项正确故选:AD11从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论正确的是()A2个球都是红球的概率为B2个球不都是红球的概率为C至少有1个红球的概率为D2个球中恰有1个红球的概率为【分析】设
20、“从甲袋中摸出一个红球”为事件A1,从“乙袋中摸出一个红球”为事件A2,则P(A1),P(A2),结合相互独立事件的概率乘法公式,即可求解解:设“从甲袋中摸出一个红球”为事件A1,从“乙袋中摸出一个红球”为事件A2,则P(A1),P(A2),对于A选项,2个球都是红球为A1A2,其概率为,故A选项正确,对于B选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为1,故B选项错误,对于C选项,2个球至少有一个红球的概率为1,故C选项正确,对于D选项,2个球中恰有1个红球的概率为,故D选项正确故选:ACD12如图,在正方体ABCDA1B1C1D1中,E是棱A1B1的中点,P是线段A1C
21、(不含端点)上的一个动点,那么在点P的运动过程中,下列说法中正确的有()A存在某一位置,使得直线PE和直线BB1相交B存在某一位置,使得BC平面AEPC点A1与点B1到平面PBE的距离总相等D三棱锥C1PBE的体积不变【分析】选项A,可证PE与直线BB1异面,从而可判定;选项B,连接ED交A1C于点P,可证BC平面ADE,从而可判定选项B;选项C,过点A1与点B1作平面PBE的垂线,垂足分布为H,H1,有B1HEA1H1E,从而可得结论;选项D,为定值,结合A1C平面C1BE,所以P到平面C1BE的距离为定值,从而可得结论解:选项A:P是线段A1C(不含端点)上的一个动点,PE平面ABB1A1
22、E,而EBB1,由异面直线的判定定理可知PE与直线BB1异面,所以不存在某一位置,使得直线PE和直线BB1相交,故选项A不正确;选项B,连接ED交A1C于点P,面APE即为面ADE,此时BCAD,而BC平面ADE,AD面ADE,所以BC平面ADE,即BC平面AEP,故选项B正确;选项C:如图过点A1与点B1作平面PBE的垂线,垂足分布为H,H1,有B1HEA1H1E,所以B1HA1H1,即点A1与点B1到平面PBE的距离总相等,故选项C正确;选项D:因为,为定值,连接B1C交BC1于点F,连接EF,而A1CEF,A1C平面C1BE,EF平面C1BE,所以A1C平面C1BE,所以P到平面C1BE
23、的距离为定值,所以三棱锥C1PBE的体积不变,故选项D正确故选:BCD三、填空题:本大题共4小题,每小题5分,共20分13为做好“新冠肺炎”疫情防控工作,济南市各学校坚持落实“双测温两报告”制度,以下是某宿舍6名同学某日上午的体温记录:36.3,36.1,36.4,36.7,36.5,36.6(单位:),则该组数据的第80百分位数为36.6【分析】先把6个数据按从小到大顺序排列,再计算并确定该组数据的第80百分位数解:由题意知,6个数据按从小到大顺序排列为:36.1,36.3,36.4,36.5,36.6,36.7;且680%4.8,所以该组数据的第80百分位数是第5个数,为36.6()故答案
24、为:36.614已知向量,写出一个与向量方向相反的向量(2,4)(用数字作答)【分析】直接利用相反向量的定义,求解即可解:当向量(2,4)时,则2,与向量方向相反的向量(2,4),故答案为:(2,4)15某个微信群在某次进行的抢红包活动中,若某人所发红包的总金额为15元,被随机分配为3.50元,4.75元,5.37元,1.38元共4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,则甲、乙二人抢到的金额之和不低于8元的概率为 【分析】甲、乙两人抢到的金额之和包含的基本事件有个数m6,利用列举法求出甲、乙二人抢到的金额之和不低于8元包含的基本事件有3个,由此能求出甲、乙二人抢到的金额之和不低于8
25、元的概率解:某人所发红包的总金额为15元,被随机分配为3.50元,4.75元,5.37元,1.38元共4份,甲、乙、丙、丁4人参与抢红包,每人只能抢一次,甲、乙两人抢到的金额之和包含的基本事件有个数m6,甲、乙二人抢到的金额之和不低于8元包含的基本事件有:(3.5,4.75),(3.5,5.37),(4.75,5.37),共3个,甲、乙二人抢到的金额之和不低于8元的概率P故答案为:16农历五月初五是中国的传统节日端午节,民间有吃粽子的习俗,粽子又称“粽粒”,故称“角黍”同学们在劳动课上模拟制作“粽子”,如图(1)的平行四边形形状的纸片是由六个边长为1的正三角形组成的,将它沿虚线折起来,可以得到
26、如图(2)的粽子形状的六面体,则该六面体的体积为 ;若该六面体内有一球,则该球的体积的最大值为 【分析】该六面体由两个棱长为1的正四面体组合而成,故体积为正四面体体积的两倍;由对称轴性知球心为正四面体底面三角形的外心,半径为外心到球面的距离作出图象,结合平面几何的知识求解解:由题意知,该六面体由两个棱长为1的正四面体组合而成如图,在正四面体PABC中,O是底面ABC的外心,则PO平面ABC,所以所以,故六面体的体积为当球与六面体的各个侧面相切时,体积最大由对称轴性知球心为O,取AB中点D,连接PD,过O点作OEPD,垂足为E,则OE为球的半径因为,所以所以球的体积为故答案为:;四、解答题:本大
27、题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17“自媒体”是指普通大众通过网络等途径向外发布他们本身的事实和新闻的传播方式某“自媒体”作者2020年度在“自媒体”平台A上发布了200条事实和新闻,现对其点击量进行统计,如表格所示:点击量(万次)0,1(1,50(50,100(100,200条数201006020()现从这200条事实和新闻中采用分层抽样的方式选出10条,求点击量超过50万次的条数;()为了鼓励作者,平台A在2021年针对每条事实和新闻推出如下奖励措施:点击量(万次)0,1(1,50(50,100(100,200奖金(元)02005001000若该作者在2021年5
28、月份发布了20条事实和新闻,请估计其可以获得的奖金数【分析】()利用抽取的比例相同,列出比例关系,求解即可;()分别计算出各奖金对应的条数,然后由平均数计算公式求解即可解:()设被抽取的点击量(万次)在0,1,(1,50,(50,100,(100,200的事实和新闻的条数分别为m,n,p,q,则,所以m1,n5,p3,q1,则点击量超过50万次的条数为4条;()由题意知,根据2020年度的频率估计得出:奖金(元)02005001000条数(元)21062则20010+5006+100027000,所以估计该作者在2021年5月可以得到的奖金为7000元18在ABC中,内角A,B,C所对的边分别
29、为a,b,c,已知a4,B30(1)求sinC的值;(2)且ADC120,求正实数的值【分析】(1)由已知在ABC中利用由余弦定理可求b的值,进而根据正弦定理即可sinC的值(2)由题意可求ABD为直角三角形,可求BD的值,进而即可求解的值解:(1)a4,B30,在ABC中,由余弦定理知,b2a2+c22accosB16+327,由正弦定理知,(2)ADC120,ADB60,又B30,ABD为直角三角形,又,BC4,19如图,在三棱柱ABCA1B1C1中,F为AC中点(1)求证:AB1平面BFC1(2)若此三棱柱为正三棱柱,且,求FBC1的大小;【分析】(1)取A1C1中点E,连接B1E,EF
30、,AE,推导出四边形EFBB1是平行四边形,进一步得到平面AB1E平面BFC1,再利用面面平行的性质,证明AB1平面BFC1即可(2)设A1C1,则AA12,分别求出BF,BC1,C1F,利用余弦定理能求出FBC1的大小解:(1)证明:取A1C1中点E,连接B1E,EF,AE,在三棱柱中,E,F是中点,则,四边形EFBB1是平行四边形,B1EBF,B1E平面BFC1,BF平面BFC1,B1E平面BFC1,E,F是中点,四边形AFC1E是平行四边形,AEC1F,AE平面BFC1,C1F平面BFC1,AE平面BFC1,B1EAEE,平面AB1E平面BFC1,AB1平面AB1E,AB1平面BFC1(
31、2)设A1C1,则AA12,在正ABC中,BF,在RtBCC1中,BC,CC12,cosFBC1FBC1的大小为20某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间40,50),50,60),80,90),90,100()求频率分布直方图中a的值;()估计该中学学生对个性化作业评分不低于70的概率;()从评分在40,60)的受访学生中,随机抽取2人,求此2人评分都在50,60)的概率【分析】()由概率和为1可求得a值;()估计频率分布直方图计算学生评分在70,100中的频率即可;()计算出评
32、分在40,50),50,60中的人数,再对每位同学进行标记,计算即可解决此问题解:()因为(0.004+a+0.018+0.0222+0.028)101,所以a0.006()由所给频率分布直方图知,50名受访学生评分不低于70的频率为(0.028+0.022+0.018)100.68,所以该中学学生对个性化作业评分不低于70的概率的估计值为0.68()受访学生评分在50,60)的有500.006103(人),即为A1,A2,A3;受访学生评分在40,50)的有:500.004102(人),即为B1,B2从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是:A1,A2,A1,A3,A
33、1,B1,A1,B2,A2,A3,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2又因为所抽取2人的评分都在50,60)的结果有3种,即A1,A2,A1,A3,A2,A3,故所求的概率为21如图,在四棱锥PABCD中,底面ABCD为正方形,PA底面ABCD,PAAB4,E为PB的中点,F为线段BC上的点,且BFBC(1)求证:平面AEF平面PBC;(2)求点F到平面PCD的距离【分析】(1)证明BC平面PAB得出AEBC,结合AEPB得出AE平面PBC,故而平面AEF平面PBC;(2)取PD中点G,证明AG平面PCD,AB平面PCD,则点B到平面PCD的距离为AG的长,利用BFBC,
34、即可求得点F到平面PCD的距离【解答】(1)证明:PA平面ABCD,BC平面ABCD,PABC,又BCAB,PAABA,BC平面PAB,又AE面PAB,BCAE,PAAB,E为PB中点,AEPB,又BCPBB,AE平面PAB,又AE平面AEF,平面AEF平面PBC(2)解:ABCD,AB平面PCD,CD平面PCD,AB平面PCD,B到平面PCD的距离等于A到平面PCD的距离,取PD的中点G,连接AG,PA平面ABCD,PACD,又CDAD,ADPAA,CD平面PAD,CDAG,PAAD,G是PD的中点,AGPD,又PDCDD,AG平面PCD,PAAD4,PAAD,PD4,AGPD2,点B到平面
35、PCD的距离为2,BFBC,点F到平面PCD的距离为222某中学在2020年高考分数公布后对高三年级各班的成绩进行分析经统计,某班有50名同学,总分都在区间600,700内,将得分区间平均分成5组,统计频数、频率后,得到了如图所示的“频率分布”折线图(1)请根据频率分布折线图,画出频率分布直方图,并根据频率分布直方图估计该班级的平均分;(2)经过相关部门的计算,本次高考总分大于等于680的同学可以获得高校T的“强基计划”入围资格高校T的“强基计划”校考分为两轮第一轮为笔试,所有入围同学都要参加,考试科目为数学和物理,每科的笔试成绩从高到低依次有A+,A,B,C四个等级,两科中至少有一科得到A+
36、,且两科均不低于B,才能进入第二轮,第二轮得到“通过”的同学将被高校T提前录取已知入围的同学参加第一轮笔试时,总分高于690分的同学在每科笔试中取得A+,A,B,C的概率分别为;总分不超过690分的同学在每科笔试中取得A+,A,B,C的概率分别为;进入第二轮的同学,若两科笔试成绩均为A+,则免面试,并被高校T提前录取;若两科笔试成绩只有一个A+,则要参加面试,总分高于690分的同学面试“通过”的概率为,总分不超过690分的同学面试“通过”的概率为,面试“通过”的同学也将被高校T提前录取若该班级考分前10名都已经报考了高校T的“强基计划”,且恰有2人成绩高于690分求总分高于60分的某位同学没有
37、进入第二轮的概率P1;该班恰有两名同学通过“强基计划”被高校T提前录取的概率P2【分析】(1)根据频率分布折线图,画出频率分布直方图,由此能求出平均分;(2)总分大于等于68(0分)的同学有5人,其中有3人小于等于690分,2人大于690分,利用对立事件概率计算公式和相互独立事件概率乘法公式能求出总分高于60分的某位同学没有进入第二轮的概率P1;利用相互独立事件概率乘法公式和互斥事件概率计算公式能求出该班恰有两名同学通过“强基计划”被高校T提前录取的概率解:(1)根据频率分布折线图,画出频率分布直方图如下:平均分为:;(2)总分大于等于68(0分)的同学有500.005205人,由已知,其中有3人小于等于690分,2人大于690分,;设高于69(0分)的同学被高校T提前录取为事件M,不超过69(0分)的同学被高校T提前录取为事件N,则,该班恰有两名同学通过“强基计划”被高校T提前录取的概率:P2