1、PITL-功率集成技术实验室功率集成技术实验室2022-6-22nIGBT 虽然份额较小,但发展快速,从IGBT 耐压范围上看,电压在600V-1200V 之间的IGBT 用量最大,目前在电磁炉、电源、变频家电等产品中使用的IGBT 耐压一般都是600V和1200V。低于600V 的IGBT 产品主要使用在数码相机闪光灯和汽车点火器上。电压大于1200V 的IGBT 主要以1700V IGBT 为主,该产品在高压变频器等工业产品上广泛使用。IGBT的应用的应用PITL-功率集成技术实验室功率集成技术实验室2022-6-22nIGBT的主要生产厂商有: INFINEON ,FAIRCHILD ,
2、IR ,MITSUBISHI , ON SEMICONDUCTOR , FUJI ,TOSHIBA ,ABB,IXYS , ST 等IGBT的主要生产厂商的主要生产厂商PITL-功率集成技术实验室功率集成技术实验室2022-6-22系列:系列:2A4000A;370V6500V。 1200A/3300V;400A/6500V (module);100A/1200 V (single die);5-25 kHz, up to 180 kHz at 370-600V ratings;IGBT current and voltage ratingsPITL-功率集成技术实验室功率集成技术实验室202
3、2-6-22 在高频领域,在高频领域,2003年年2月月IR公司推出公司推出NPT(Non-Punch-Through)结构的)结构的150KHz/600V系列系列IGBT; 在高电压应用领域,在高电压应用领域,Eupec生产的生产的600A/6500V的的IGBT模块已获得实际应用模块已获得实际应用;ABB公司采用软穿通(公司采用软穿通(Soft-Punch-Through)原则研制出)原则研制出8000伏伏IGBT。IGBT productsPITL-功率集成技术实验室功率集成技术实验室2022-6-22Power (KVA)Application ranges of power swit
4、chersPITL-功率集成技术实验室功率集成技术实验室2022-6-22Advantages:Insulated gate control (voltage control)Low forward voltage drop (conductivity modulation)Large forward-biased SOALarge reverse-biased SOAIGBT advantagesPITL-功率集成技术实验室功率集成技术实验室2022-6-22Current (A)FIG-IGBT offer reduced forward voltage drop compared to
5、a MOSFET with similar rating.IGBT vs MOSFETPITL-功率集成技术实验室功率集成技术实验室2022-6-22IGBT Structure and OperationN-P+P+P+PPn+n+J1J2CollectorEmitterCGERSIPITL-功率集成技术实验室功率集成技术实验室2022-6-22 IGBT 的的I-V特性特性VCEICEVGForward CharacteristicsReverse CharacteristicsPITL-功率集成技术实验室功率集成技术实验室2022-6-22 IGBT 优化的三角形原则优化的三角形原则PI
6、TL-功率集成技术实验室功率集成技术实验室2022-6-22N-P+P+P+PPn+n+J1J2CollectorEmitterIGBT Reverse Blocking CapabilityPITL-功率集成技术实验室功率集成技术实验室2022-6-221. J1 reverse biased and its depletion layer extends primarily into the lightly doped N- drift region;2. Open-base PNP transistor breakdown3. low reverse blocking capabilit
7、y of the PT-IGBT;4. Junction termination problem: It is difficult for plane JTT.IGBT Reverse Blocking CapabilityPITL-功率集成技术实验室功率集成技术实验室2022-6-22IGBT Forward Blocking Capabilityn+n+p+p+ppp+n-CollectorEmitterJ1J2PITL-功率集成技术实验室功率集成技术实验室2022-6-221. The P-base doping profile limiting;2. The spacing betwe
8、en the DMOS cells ;3. Open-base PNP transistor breakdown; 4. Junction termination is similar to power MOSFETs;IGBT Forward Blocking CapabilityPITL-功率集成技术实验室功率集成技术实验室2022-6-22Symmetrical DevicesN-P+P+P+PPn+n+J1J2CollectorEmitterDOPINGPN+NP+Doping distributionPITL-功率集成技术实验室功率集成技术实验室2022-6-22Symmetrica
9、l DevicesDOPINGPN+NP+Electric fieldFig. NPT-IGBT with symmetric blocking structure.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Asymmetrical devicesN-P+P+P+PPn+n+J1J2CollectorEmitterPN+N-P+DOPINGNDoping distributionPITL-功率集成技术实验室功率集成技术实验室2022-6-22Asymmetrical devicesPN+N-P+DOPINGNElectric fieldFig. PT-IGBT with
10、asymmetric blocking structure.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Operation MechanismN-P+P+P+PPn+n+J1J2CollectorEmitter VGVT OFF State VG0 Forward Blocking State VGVT and VCE0 On StatePITL-功率集成技术实验室功率集成技术实验室2022-6-22Forward Conduction StateN-P+P+P+PPn+n+J1J2CollectorEmitterCGIEPITL-功率集成技术实验室功率集成技术实验室202
11、2-6-22Forward Conduction StateN-P+P+P+PPn+n+J1J2CollectorEmitterCGERSIPITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Modeln- basep+p basen+p+Emitter/cathode Collector/Anode J2J1PiN diodeMOSFETGECPINFMOSFIGBTFVVV,)(W used to understand device behavior in many casePITL-功率集成技术实验室功率集成技术实验室2022-6-2
12、2PiN Rectifier/MOSFET Model In analyzing the forward conduction characteristics by using the PiN rectifier/MOSFET model, the device is treated as composed of two sections. Assuming a single current flow path existing through the PiN diode and MOSFET connected in series. Using the analysis of the for
13、ward conduction characteristics of a PiN rectifier, the voltage drop across the PiN rectifier (VF,PiN) is related to its forward conduction current density (JF, PiN) by:kTqVaiaPINFdiodeCPINFeLWFWnqDJJJ2,)2(4PITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Model Where W is the thickness of the n-
14、base in the IGBT structure. Here, we assumes that the current density in the PiN diode is approximately equal to the collector current density due to the fact that the current spreads from the bottom of the drift and is uniformly distributed across the cross-section of the device cell over most of t
15、he distance between the collector and P-base region of IGBTs. So, the voltage drop across the PiN diode is given by: )2/(4ln2,aiaCPiNFLWFnqDWJqkTVPITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Model Since the PiN rectifier current flows through the MOSFET channel, the MOSFET current is given b
16、y:ZWJIIcellcEMOSWhere, Wcell is the width of the unit cell. PITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Model The voltage drop across the MOSFET (VF,MOS) is related to the current flowing through it (IMOS) and the gate bias voltage (VGS) by the relationship discussed in power MOSFETs:)(222,
17、MOSFMOSFthGSchoxnMOSVVVVLZCI In the forward conduction mode, sufficient gate voltage is applied such that the forward voltage drop across the device is low. Under these condition, the MOSFET section of the IGBT is operating in its linear region and the MOSFET current is given by:PITL-功率集成技术实验室功率集成技术
18、实验室2022-6-22PiN Rectifier/MOSFET Model)( when )(,thGSF,MOSMOSFthGSchoxnMOSVVVVVVLZCI)( when )(,thGSF,MOSMOSFthGSchoxnMOSVVVVVVLZCIThe voltage drop across the MOSFET section is therefore given by:)(,thGSOXnCHcellCMOSFVVCLWJVPITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Model Thus, the voltage
19、drop across the IGBT is the sum of the voltage drop across the MOSFET and the PiN rectifier:PINFMOSFIGBTFVVV,)(PITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET ModelVCEICEVGOn-state characteristics of the IGBT based on the PiN rectifier/MOSFET mode. PITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/
20、MOSFET Model Using the PiN rectifier/MOSFET model, it is also possible to derive the IGBT characteristics under current saturation. When the voltage drop across the MOSFET channel closes to the VGS-Vth, the IGBT current becomes limited by the MOSFET. Thus, the IGBT collector current will saturate at
21、 a value given by:)(when )(22,thGSF,MOSthGSchoxnMOSVVVVVLZCIPITL-功率集成技术实验室功率集成技术实验室2022-6-22PiN Rectifier/MOSFET Model VGVF Current saturation characteristics VF ; Major Shortcoming: It omits the hole current component flowing into the P-base regionPITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/
22、MOSFET ModelBJTMOSEIIIGECIEIMOSIBJTICBJTBeMOSIII, BJTChBJTIII,n- basep+p basen+p+Emitter/cathode Collector/Anode J2J1MOSFETElectron CurrentHole CurrentPITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET ModelBJTMOSEIIIBJTBeMOSIII, BJTChBJTIII,MOSPNPECIII11MOSPNPPNPMOSMOSPNPMOSECIIIIII1PITL-功率集
23、成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET Model The PNP transistor must have a large base width in order to support the forward voltage. Therefore, its current gain (PNP) is primarily determined by the base transport factor (T) given by:)/cosh(1adepletedunTPNPLWwhere Wun-depleted is the unde
24、pleted base width of the PNP transistor and La is the ambipolar diffusion length.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET Model The analysis of the voltage drop across the IGBT can be obtained by using the same manner as described earlier for the PiN rectifier/MOSFET model. However,
25、 it should be noticed that the MOSFET channel current is (1-PNP)IC in this model not IC used in the PiN rectifier/MOSFET model. BJTCMOSECCMOSIIII II, Model /MOSFETTransistorBipolar For model MOSFETrectifier/ PiNFor :PITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET Model)()1 ()2/(4ln2,)(thGS
26、OXnCHCPNPaiacellCPINFMOSFIGBTFVVZCLILWFnZDqWWIqkTVVV;for )(,thGSF,MOSMOSFthGSchoxnMOSVVVVVVLZCIBased on the theory of the MOSFETLinear Region:PITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET ModelthGSMOSFthGSchoxnMOSVVVVVLZCI,2 when )(2Saturation Drain Current:MOSPNPECIII112,)(2111thGSCHOXn
27、PNPPNPsatMOSsatCVVLZCIIPITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET ModelFig. 7-4-5 Output characteristics of the IGBT for analysis of the saturation feature.PT-IGBTNPT-IGBTVCEICEPITL-功率集成技术实验室功率集成技术实验室2022-6-22Bipolar Transistor/MOSFET Model)/cosh(1)(abufferPNPLWIGBTPT)/cosh(1adepleted
28、unTPNPLW)/cosh(1)(adepletedunPNPLWIGBTNPTdepletedunWVbufferdepletedunWWVFor PT-IGBTPITL-功率集成技术实验室功率集成技术实验室2022-6-22On-state carrier distributionn- basep+p basen+p+EmitterCollectorPiNIGBTJ2J1WP(x)Polysilicon gate regionPolysilicon gate windowPITL-功率集成技术实验室功率集成技术实验室2022-6-22 On-state Forward VoltageCH
29、JFETACCdriftNPFVVVVVV VJFET leads to a large VF Improving method: Increasing the doping in the JFET regionN-P+P+P+PPn+n+J1J2CollectorEmitterPITL-功率集成技术实验室功率集成技术实验室2022-6-22Parasitic thyristor latch-upN-P+P+P+PPn+n+J1J2CollectorEmitterCGERSIPITL-功率集成技术实验室功率集成技术实验室2022-6-22Parasitic thyristor latch-up
30、N-P+P+P+PPn+n+J1J2CollectorEmitterCGERSILatch-upPITL-功率集成技术实验室功率集成技术实验室2022-6-22Parasitic thyristor latch-upLatch-up condition: npn+ pnp=1; The methods for suppress the turn-on of the parasitic thyristor: Reducing the gain of the NPN transistor, Reducing the gain of the PNP transistor; Reducing the
31、gains of both NPN and PNP transistors.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Reduction the Gain of the P-N-P TransistorMethod: Reducing the base transport factor by reducing the minority carrier lifetime in the N-drift region Decreasing the injection efficiency of the emitter decreasing the concentration o
32、f the emitterbuffer layerCollector-shorted structureTransparent collector structureSince the on-state current flows partially via the PNP transistor, a reducing in its gain produces an increase in the on-state voltage drop.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Reduction the Gain of the N-P-N TransistorN-d
33、riftP +N-driftP+Deep P+ diffusionShallow P+ region by ion implantation.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Reduction the Gain of the N-P-N TransistorN-driftP+Shallow P+ region by ion implantation under the N+ emitter.P+PITL-功率集成技术实验室功率集成技术实验室2022-6-22Reduction the Gain of the N-P-N TransistorN-driftP +N
34、+N+PP+A self-aligned latch-up-free IGBT with sidewall diffused N+ emitterPITL-功率集成技术实验室功率集成技术实验室2022-6-22Switching Characteristics Because the IGBT is a MOS-gated device, the turn-on switching performance is dominated by the MOS structure of the device. VGEICVCEIdealized turn-on switching of IGBTPIT
35、L-功率集成技术实验室功率集成技术实验室2022-6-22Typical Capacitance vs. Collector-to-Emitter VoltageGA2000SA60S made by IR.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Gate Charge Transfer CurvePITL-功率集成技术实验室功率集成技术实验室2022-6-22Turn offnAn important characteristic of the IGBT is its gate turn-off capability. nSince the current flowi
36、ng through the MOS channel controls the output characteristics, the collector current flow can be interrupted by removing the gate drive voltage. nWhen the gate voltage falls below the threshold voltage of the MOS gate structure, the channel inversion layer can no longer exist. At this point, the el
37、ectron current (Ie) ceases.n If the gate turn-off is performed using a low external resistance in the gate drive circuit so as abruptly reduce the gate voltage to zero, the collector current will drop abruptly because the channel current (Ie) is suddenly discontinued. PITL-功率集成技术实验室功率集成技术实验室2022-6-2
38、2Turn offnEven after this occurs, the collector current continues to flow because the hole current (Ih) does not cease abruptly. nThe high concentration of minority carrier stored in the N-drift region during the on-state supports the hole current flow. nAs the minority carrier density decays due to
39、 the recombination, it leads to a gradual reduction in the collector current. This current flow is sometimes referred to as a current tail. nDuring inductive switching, holes are injected from the anode side in order to keep the current conduction, resulting a longer current tail. PITL-功率集成技术实验室功率集成
40、技术实验室2022-6-22Turn offVGttICICCurrent tailFig. Typical ideal current waveform of the IGBT during turn-off. PITL-功率集成技术实验室功率集成技术实验室2022-6-22Turn offCpnpeCIII)1 (CpnphCCIIII)/exp()()(HLCCCtIItI)10ln(pnpHLOFFt%10)(:DefiningCOFFCItIFVbut ,OFFpnptVGttICICPITL-功率集成技术实验室功率集成技术实验室2022-6-22Turn off Just as w
41、ith MOSFETs, a negative bias can be applied to the gate of an IGBT to speed up the turn-off. This does not mean that the recombination of minority carriers in the wide base region will be increased, but it helps to speed up the turn off of the MOSFET portion, and thus turn-off the base of the integr
42、al PNP bipolar transistor quicker. The rapid turn-off will cause a high dv/dt.PITL-功率集成技术实验室功率集成技术实验室2022-6-222022-6-22Method 1: RGReduce Eoff _Rg The rapid turn-off will cause a high dv/dt.PITL-功率集成技术实验室功率集成技术实验室2022-6-22Reduce_Eoff Vg-15-10-505101505 10-71 10-61.5 10-62 10-62.5 10-63 10-63.5 10-64
43、 10-6Time (Second)0 V - 15 V- 15 V - + 15 VPITL-功率集成技术实验室功率集成技术实验室2022-6-22Turn-off lossGate Driver0V - 15 V-15 V - + 15VTurn-off Loss (mJ/cm2)14.356.93Turn-off loss at different gate driversPITL-功率集成技术实验室功率集成技术实验室2022-6-22VF and EOFF Trade-offMethod 1: NPT & PTFig. Trade-off relationship between VF
44、 and toff for the PT and original NPT IGBT.NPTPTtoffBV = 600 VVFPITL-功率集成技术实验室功率集成技术实验室2022-6-221.PT-IGBT vs NPT-IGBTP o lyS iO2S o u rc e M e ta lB P S Gn +p -w e llp +J F E Tre g io nn - e p in + b u ffe r(e p i)p + s u b s tra teB a c k s id ec o n ta c tS o u rc e M e ta lB P S Gn +p -w e llp +J
45、 F E Tre g io nn - F Zp +s u b s tra teL ife tim e C o n tr o lO p tio n a lL ife tim e C o n tr o lP U N C H -T H R O U G H I G B TN O N -P U N C H -T H R O U G H I G B TFig. Structures of (a) PT-IGBT and (b) NPT-IGBT.PITL-功率集成技术实验室功率集成技术实验室2022-6-222.Lifetime Controlling11.21.41.61.822.22.42.60102
46、03040506012345671200 V IGBT with 1E14 buffer charge 25 OCVF (10um buffer)VF (25um buffer)Eoff (10um buffer)Eoff (25um buffer)VF 100 A/cm2 (V)Eoff 600V_100A (mJ)Tn+Tp (us)PITL-功率集成技术实验室功率集成技术实验室2022-6-223.Buffer Optimizing10203040501.11.21.31.41.51.61.71.8VF vs Eoff of 1200-V IGBTs with 1e14 buffer c
47、harge 25 oC 10um buffer25um bufferEoff (mJ)VF (V)PITL-功率集成技术实验室功率集成技术实验室2022-6-224.Collector Engineering of the IGBTP+PN-P+PN-nTransparent collectorP+N+N-P+N+N-nShorted collectorPITL-功率集成技术实验室功率集成技术实验室2022-6-22IGBT的开关特性PITL-功率集成技术实验室功率集成技术实验室2022-6-22Diode-Clamped inductive loadPITL-功率集成技术实验室功率集成技术实
48、验室2022-6-22Turn On WaveformPITL-功率集成技术实验室功率集成技术实验室2022-6-22n It is a realistic switching waveform considering the characteristics of diode recovery and stray inductance (LS). First, we set the condition to be in the constant steady state current, which initially flows through the inductive load and
49、then flows through the ideal diode (freewheeling diode) connected in parallel with the inductive load.Turn On WaveformPITL-功率集成技术实验室功率集成技术实验室2022-6-22n It is the section where vGE rises to VGE(th) while iG charges the parasitic input capacitance Cge, Cgc. The vGE increase pattern is shown to be line
50、ar, but it is actually an exponential curve with time constant RG(Cge+Cgc). The vCE is maintained at the VCC value, and iC remains at zero. most of the turn-ondelay falls under this section.t0 sectionPITL-功率集成技术实验室功率集成技术实验室2022-6-22nvGE continues to increase exponentially past VGE(th) as it does in