不等式知识点总结全面版课件.ppt

上传人(卖家):三亚风情 文档编号:3236607 上传时间:2022-08-10 格式:PPT 页数:16 大小:756.50KB
下载 相关 举报
不等式知识点总结全面版课件.ppt_第1页
第1页 / 共16页
不等式知识点总结全面版课件.ppt_第2页
第2页 / 共16页
不等式知识点总结全面版课件.ppt_第3页
第3页 / 共16页
不等式知识点总结全面版课件.ppt_第4页
第4页 / 共16页
不等式知识点总结全面版课件.ppt_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、不等式知识点不等式知识点制作:临沂一中制作:临沂一中 李福国李福国2003年年10.15不等式知识点不等式知识点不等式知识要点不等式知识要点一一.知识网络知识网络不等式不等式不等式性质不等式性质不等式的基本性质不等式的基本性质绝对值不等式的基本性质绝对值不等式的基本性质 证明不等式主要方法证明不等式主要方法比比较较法法综综合合法法分分析析法法其它重要方法其它重要方法反反证证法法放放缩缩法法判判别别式式法法解不等式解不等式整式不等式整式不等式可化为整式不等式的不等式可化为整式不等式的不等式不等式的应用不等式的应用数数学学归归纳纳法法构构造造函函数数法法换换元元法法重要不等式:重要不等式:定理:定

2、理:ab2ba22 )0b,0a(ab2ba 不等式知识点不等式知识点1.两实数大小的比较两实数大小的比较 0baba0baba0baba2.不等式的性质不等式的性质二二.知识要点知识要点 b1a10ba,b1a10baba1nNn0babaNn0ba0bdac0dc0ba,bcacocbadbcadcbabcacbacbcabacbacb,baabbannnn倒倒数数法法则则且且开开方方法法则则乘乘方方法法则则同同向向正正数数不不等等式式相相乘乘乘乘法法单单调调性性同同向向不不等等式式相相加加移移项项法法则则加加法法单单调调性性传传递递性性对对称称性性不等式知识点不等式知识点3.基基本本不不

3、等等式式定定理理 2a1a0a2a1a0ab,a(2baab)ba(2baab2ba2baab2baab)ba(21baab2ba2222222222倒倒数数形形式式同同号号)分分式式形形式式根根式式形形式式整整式式形形式式不等式知识点不等式知识点1122ba2ab2ba2ba )0,c,b,a(abc3cba333 )0,c,b,a(abc3cba3 4.公式公式5.重要结论重要结论不等式知识点不等式知识点(4)反证法:正难则反)反证法:正难则反6.证明不等式的主要方法证明不等式的主要方法 BA)0B(1BABA0BA作商法作商法作差法作差法(6)放缩法:要恰当的放缩以达到证题的目的)放缩法

4、:要恰当的放缩以达到证题的目的(1)比较法:)比较法:(2)综合法:由因导果)综合法:由因导果(3)分析法:执果索因)分析法:执果索因(5)构造法:构造函数或不等式证明不等式)构造法:构造函数或不等式证明不等式 不等式知识点不等式知识点 (7)判别式法:与一元二次函数有关的或可以转化)判别式法:与一元二次函数有关的或可以转化为一元二次函数为一元二次函数,根据其有无实数解建立不等式关系根据其有无实数解建立不等式关系求解问题求解问题.(9)数学归纳法:)数学归纳法:(8)换元法:三角换元,增量换元)换元法:三角换元,增量换元,均置换元均置换元.不等式知识点不等式知识点 7.绝对值的定义绝对值的定义

5、 )0a(,a)0a(,0)0a(,aa8.绝对值的性质绝对值的性质 n21n21nnaaaaaabababaaababababa0a不等式知识点不等式知识点9.绝对值的解法绝对值的解法 :)x(g)x(f)x(g)x(faaaaaabababa)x(g)x(f)x(g)x(g)x(f)x(g)x(f),x(g)x(f)x(g)x(fax,ax)0a(,axaxa)0a(,ax22n21n21利利用用绝绝对对值值的的几几何何意意义义值值号号的的不不等等式式于于两两个个或或两两个个以以上上绝绝对对划划分分区区域域讨讨论论法法:适适合合平平方方法法或或或或公公式式法法不等式知识点不等式知识点10.

6、解不等式解不等式 )0a(abx)0a(abx)0a(bax(2)一元二次不等式:一元二次不等式:Rx,0a2bx,0)xx(xx,xx,0)0a(0cbxax21212(1)一元一次不等式一元一次不等式不等式知识点不等式知识点(3)高次不等式:高次不等式:0)()(21naxaxax naaa21 数数轴轴标标根根法法表表解解法法(4)分式不等式:分式不等式:0)x(g0)x(g)x(f0)x(g)x(f0)x(g)x(f0)x(g)x(f不等式知识点不等式知识点(5)无理不等式无理不等式 )x(g)x(f0)x(f0)x(g)x(g)x(f)x(g)x(f0)x(g0)x(f0)x(g)x

7、(g)x(f)x(g)x(f0)x(g)x(g)x(f22或或不等式知识点不等式知识点(7)对数不等式对数不等式 )1a0()x(g)x(f0)x(g0)x(f)1a()x(g)x(f0)x(g0)x(floglog)x(ga)x(fa(6)指数不等式指数不等式:)1a0(),x(g)x(f)1a(),x(g)x(faa)x(g)x(f不等式知识点不等式知识点11.不等式的分类(按所连接的解析式类型分类)不等式的分类(按所连接的解析式类型分类)三三角角不不等等式式对对数数不不等等式式指指数数不不等等式式超超越越不不等等式式无无理理不不等等式式绝绝对对值值不不等等式式分分式式不不等等式式高高次次

8、不不等等式式二二次次不不等等式式一一次次不不等等式式整整式式不不等等式式有有理理不不等等式式代代数数不不等等式式不不等等式式不等式知识点不等式知识点2003年年10月月15日日只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向

9、前看,向前进。所有的未来,都是靠脚步去丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于“我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知

10、足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局,或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少,走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人

11、生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟!一生有多少属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬

12、,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁?长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时光不会因你而停留,你却会随着光阴而老去。有些事情

13、注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此

14、,对自己经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来,我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎!为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流

15、云散;看过太多翻云覆雨的友情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不

16、容易,都有自己方向。相识就是缘分吧,在一起的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里,故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的童年,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动,日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,谁会和你牵手相伴一生,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(不等式知识点总结全面版课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|