1、 成员:韦成员:韦习娟习娟 吴吴明阳明阳 陈陈 云云 王王晓彤晓彤 如果我们把如果我们把1818世纪的数学家想世纪的数学家想象为一系列的高山峻岭,那么最后象为一系列的高山峻岭,那么最后一个使人肃然起敬的顶峰便是高一个使人肃然起敬的顶峰便是高斯斯那样一个在广大丰富的区域那样一个在广大丰富的区域充满了生命的新元素。充满了生命的新元素。克莱因(德国数学家)克莱因(德国数学家)小木屋里飞出了金凤凰小木屋里飞出了金凤凰=1777185517771855德国乡村不伦瑞克德国乡村不伦瑞克高斯父亲高斯父亲-园艺工人,园艺工人,识字不多,但为人耿直,识字不多,但为人耿直,做事一丝不苟,对高斯做事一丝不苟,对高斯
2、很严厉很严厉 高斯母亲是石匠的女儿,聪明高斯母亲是石匠的女儿,聪明直率,性格坚强。他了解小高直率,性格坚强。他了解小高斯的兴趣和才能,积极支持他斯的兴趣和才能,积极支持他求学上进求学上进 高斯舅舅是位技术高超的高斯舅舅是位技术高超的锦缎织工,勤学好思,头脑锦缎织工,勤学好思,头脑机敏。舅舅十分疼爱聪明的机敏。舅舅十分疼爱聪明的小外甥。他一来总要给小高小外甥。他一来总要给小高斯讲故事,做游戏,有时还斯讲故事,做游戏,有时还带他出去捉蝴蝶,钓鱼,采带他出去捉蝴蝶,钓鱼,采蘑菇蘑菇 4月的一天,风和日丽。小高斯骑在舅舅的肩上学“骑马”。突然,嗒嗒奔跑着的“马”停了下来。原来,在河的上游漂来一根木头。
3、“小高斯,你说木头为什么不沉下去?”“木头轻呗!”小高斯不假思索地回答。舅舅弯下腰,拾起一颗小石子,又问:“这颗石子重还是那段木头重?”“木头重。大木头重多啦!”弗雷德里希并不吱声。只见他用力一扔,扑通一声,石子沉到了河底。“舅舅没有给小外甥解释,为什么比大木头轻的小石子会沉下去,但是,这件事给小高斯留下难忘的印象。他认识到,要达到正确的结论,必须有严密的推理。他逐渐养成习惯,遇事一定要问它几个“为什么”要达到正确的结论,要达到正确的结论,必须有严密的推理必须有严密的推理无与伦比的早慧无与伦比的早慧3 3岁岁“我在学会说话以前,已经学会计我在学会说话以前,已经学会计算。算。”7 7岁岁1+2+
4、3+4+5+6+1+2+3+4+5+6+100=505+100=5050 01010岁岁考虑问题:在无穷级数的运算中二考虑问题:在无穷级数的运算中二项式定理应该施加些什么限制项式定理应该施加些什么限制?他对统治了他对统治了20002000多年的欧几里得几多年的欧几里得几何是否是惟一的几何真理产生怀疑何是否是惟一的几何真理产生怀疑 1212岁岁1616岁岁他已经清楚地看到非欧几何的曙他已经清楚地看到非欧几何的曙光光 幸运女神降临幸运女神降临1234 1234 5678=5678=135791357997531=97531=7006657006652 2 1324373441324373449 9
5、 一天放学后,小高斯在暮色下边走边看书,撞见了正在散步的斐迪南公爵夫人。这位贵妇人看到小高斯在看大学者欧拉的专著微分学原理!感到十分惊奇并把这事告诉了公爵。公爵曾听人说起过,不伦瑞克有个聪明过人的孩子,不过当时他半信半疑,不大在意。这次听夫人一说,果有其事,立刻决定第二天在宫殿亲自见见这个孩子。“你是约翰的儿子?”公爵问。“是,大人。”“听说你读过很多书?”“”高斯含羞地低下头,不知怎样回答才好。“你能告诉我1234 5678等于多少?”斐迪南特意准备了两道算题想当面考考孩子。一听到计算,小高斯一双大眼睛立刻明亮起来:“7006652。”“那么1357997531呢?”公爵夫人和周围的人还在思
6、索刚才的答案,只听得小高斯清楚说出它的结果:“1324373449。”多次获得过军功勋章、素以骁勇善战著称的斐迪南公爵难得在当面夸奖一个人。今天在这个小孩子面前,他不由得连连点头。在自己的领地里有这样一位神童,他感到自豪。其余的人更是个个瞪大眼睛,惊奇得说不出一句话。“你想不想上大学?”“是的,大人。”“好,我来帮助你。”就这样公爵一直资助高斯直到大学毕业。杰出的青年杰出的青年成就成就关键词关键词1.1.二次互反律二次互反律错失良机错失良机2.2.尺规做正十七边尺规做正十七边形形偶然偶然 ,摸鱼摸鱼3.3.算术研究算术研究加七道封漆的著加七道封漆的著作,作,数学的皇后数学的皇后二次互反律二次互
7、反律 1818岁那年,高斯来到哥廷根岁那年,高斯来到哥廷根大学。他将在这里学习,工作直到大学。他将在这里学习,工作直到生命的最后时刻。这一年他发现了生命的最后时刻。这一年他发现了数论中的二次互反律,数论中的二次互反律,并第一个并第一个作出严格的证明。作出严格的证明。1818岁岁二次互反律二次互反律 设设a,ba,b是两个非零整数,我们定义雅克是两个非零整数,我们定义雅克比符号比符号(a/b)(a/b):如果存在整数:如果存在整数x,x,使得使得b b整除(整除(x2-ax2-a),那么就记),那么就记(a/b)=1;(a/b)=1;否则就记(否则就记(a/ba/b)=-1=-1。在在b b是素
8、数时是素数时这个符号也叫做勒让德符号。这个符号也叫做勒让德符号。高斯二次互反律:高斯二次互反律:设设p p和和q q为不同的奇素数,则为不同的奇素数,则(p/q)(q/p(p/q)(q/p)=()=(1)(p 1)(p 1)(q 1)(q 1)1)/4/4 1818岁岁二次互反律二次互反律 “绝不能以为获得一个证明以后,绝不能以为获得一个证明以后,研究便告结束,或把寻找另外的证研究便告结束,或把寻找另外的证明当作多余的奢侈品。明当作多余的奢侈品。”高斯高斯1818岁岁错失良机错失良机 1818岁岁数学数学语言学语言学 正十七边形正十七边形1919岁岁ABOOABCOABCOABDabcCOAB
9、DEdeCOABDEMFCOABDEMFG4G6COABDEMFG4G6P4P6OA 大学时高斯每天例行作三道导师给他的数学题目。有天他像往常一样拿到三题数学题目,前两道他用了两个多小时就顺利完成,第三道题目写在一张小纸条上,要求他用一个圆规跟一把没有刻度的尺,画出一个正十七边形。他感到非常吃力,从来没有遇过这麽令他头痛的题目,他绞尽脑汁却毫无进展,不过困难激起了他的斗志,他一边思索一边尝试着各种超乎常理的推演。当窗口曙光渐渐照进屋内,青年舒了一口气,他终于完成了这到题目。见到导师时高斯有点内疚和自责,他对导师说:“您给我的三道题目,我竟然通宵作了一整晚,我辜负了您的栽培.”导师接过作业一看,
10、当场惊呆了,他用颤抖的声音对青年说:这真的是你作的吗?他要高斯拿出圆规和尺作一次给他瞧瞧,当他完成时,导师激动的对他说:你知道你解开了两千多年的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然用了一晚把它解开了!你真是一个天才!当天那纸条是导师不小心交给高斯的,当高斯回忆这一幕时,总是说:如果我知道那是一道两千多年的历史数学难题,我可能永远没有信心把它解开。超乎常理的推演超乎常理的推演几何问题几何问题代数方程代数方程 使用尺规所能作出的边数为使用尺规所能作出的边数为奇数的正多边形,它的边数必奇数的正多边形,它的边数必定是费马素数或不同费马素数定是费马素数或不同费马素数的乘积的乘积 可以用尺规
11、作出边数是可以用尺规作出边数是3 3,5 5,1717,257257,6553765537,或者边数是或者边数是它们的乘积的正多边形,但是不它们的乘积的正多边形,但是不能作正七、九、十一、十三或十能作正七、九、十一、十三或十九边形。九边形。算术研究算术研究 算术研究算术研究是研究数论(整数)的是研究数论(整数)的书,共有书,共有7 7个部分,人们风趣地称它是个部分,人们风趣地称它是部部“加七道封漆的著作加七道封漆的著作”。全书包括。全书包括3 3个核心个核心课题:同余理论、齐式论及剩课题:同余理论、齐式论及剩余论和二次互反律。余论和二次互反律。2424岁岁有理数有理数有理数有理数=有理数有理数
12、整数整数整数整数=整数整数七道封漆七道封漆加七道封漆的著作加七道封漆的著作 算术研究算术研究是一部划时代的是一部划时代的作品,它结束了作品,它结束了1919世纪以前数论世纪以前数论的无系统状态的无系统状态.EgEg:每个形如每个形如4n+14n+1的素数是两个平方数的和,的素数是两个平方数的和,如:如:4x1+1=5,4x3+1=13=9+44x1+1=5,4x3+1=13=9+4 我为了证我为了证明他奋明他奋斗了斗了7 7年!年!只要从二元二次型的只要从二元二次型的一般讨论,就可以一般讨论,就可以推导出这个结果来。推导出这个结果来。“数学,科学的皇后;数论,数学,科学的皇后;数论,数学的皇后
13、数学的皇后”高斯高斯 1849年7月16日正好是高斯获得博士学位的50周年。格丁根举行隆重的庆祝活动。有一项节目可谓别出心裁,它要高斯用算术研究中一页原稿来点燃自己的烟斗。狄里克雷正好站在高斯身旁。他看到这个情景完全给惊呆了。在最后一刹那,他不顾一切地从自己恩师手中抢下这页原稿,并且把它珍藏起来。直到狄里克雷逝世以后,编辑人员才在他一大堆手稿中重新发现它。真正的困难不是真正的困难不是困难本身,而是困难本身,而是我们对困难的畏我们对困难的畏惧惧辉煌的壮年辉煌的壮年19世纪的到来,标志着高斯事业第二阶段的开始。1.高斯用独创的最小二乘法得到了谷神星的椭圆轨道,计算出了谷神星的运行轨迹。2.高斯32
14、岁正式发表第二部杰作天体运行理论书中详尽地讨论了根据观测数据如何确定行星和彗星的轨道,由此建立了一系列天文学计算中的重要公式,还介绍了他创立的最小二乘法原理和高斯分布曲线,即我们熟知的正态分布。3.高斯43岁前后开始从事大地测量的理论研究和实际工作。并于50岁那年发表曲面的一般研究,决定了微分几何的基本方向。谁是德国最谁是德国最伟大的数伟大的数学家?学家?亚历山大亚历山大冯冯洪堡洪堡拉普拉斯拉普拉斯帕夫帕夫哦,他是世界伟哦,他是世界伟大的数学家!大的数学家!那么高那么高斯呢?斯呢?宁缺毋滥宁缺毋滥 EYPHKA!num=EYPHKA!num=+每个正整数是每个正整数是3 3个三角数之和个三角数之和 EYPHKA!EYPHKA!找到了!找到了!17961796年年1010月月1111日,日记里有这样一日,日记里有这样一条:条:VicimusVicimus GEGANGEGAN17991799年年4 4月月8 8日只简单记着日只简单记着:宁缺毋滥宁缺毋滥 “大自然,您是我的女神,我一生大自然,您是我的女神,我一生的效劳都服从于您的规律。的效劳都服从于您的规律。”