1、1方忠方忠中科院物理中科院物理研究研究所所中国工程物理研究院材料科学技术发展会议中国工程物理研究院材料科学技术发展会议2目 录一、简介二、拓扑绝缘体材料:Bi2Se3,Bi2Te3三、拓扑半金属:HgCr2Se41.简介:拓扑有序态有序态是凝聚态物理研究的基本内涵之一 例如:磁有序态、电荷有序态、超导态等例如:磁有序态、电荷有序态、超导态等局域有序态:对对称性破缺称性破缺导导致有序致有序态态 (朗道(朗道对对称性破缺理称性破缺理论论)1.1.物物态态可以用局域序参量描写可以用局域序参量描写 如:如:铁铁磁磁态态的磁化的磁化强强度度 M(r)M(r)2.2.相相变变伴随着伴随着对对称性破缺称性破
2、缺 如:如:M(r)M(r)的出的出现现破坏了破坏了 旋旋转对转对称性称性宏观有序态:拓扑有序态拓扑有序态 (量子物理与几何的完美结合)(量子物理与几何的完美结合)1.具有拓扑性质的具有拓扑性质的“量子态量子态”2.不能用局域序参量描写,而要用不能用局域序参量描写,而要用 全局拓扑不变量描写全局拓扑不变量描写3.相变过程并不伴随对称性破缺相变过程并不伴随对称性破缺拓扑“0”拓扑“1”反铁磁反铁磁铁磁铁磁自旋波自旋波1.简介:拓扑绝缘体简介拓扑绝缘体:一种全新的拓扑有序态:受时间反演性保护受时间反演性保护 要考虑要考虑 相对论相对论+量子力学量子力学一般绝缘体一般绝缘体拓扑绝缘体拓扑绝缘体金属金
3、属费米能级费米能级能带结构能带结构表面态表面态体态体态体态体态体态体态理论模型:1.C.L.Kane,PRL(2005)2.S.C.Zhang,PRL(2006)材料实现:1.二维材料:L.Molenkamp,Science(2007)2.三维材料:方忠 等,Nature Phys.(2009)(Bi2Te3,Bi2Se3,Sb2Te3)与一般表面态区别:与一般表面态区别:无论如何切样品,表面态总是存在无论如何切样品,表面态总是存在 1.简介简介:Why edge states?“Band twist”TIVaccumNormalinsulatorBoundaryCutting Band Ri
4、ngDefined by the Z2 number(or parity for inversion system)Ref:1 Kane&Mele,PRL(2005).2 Fu,Kane,Mele,PRL(2007)3 Fu,Kane,PRB(2007).Topological Insulators:1.Insulating bulk 2.Conducting surface 3.Defined by the Z2 quantum number 4.Surface state is protected by T reversal symmetry 5.Robust against none-M
5、 disordersSurface Stateordinary InsulatorSurface StateTopological Insulator+-“能带 twist”1.简介简介:Different Surface states1.简介简介:Surface state vs GrapheneGrapheneSurface state of TIKK(1)1/4 of Graphene,spin splitting,T-invariant(2)2DEG without mass(3)Klien Paradox(4)linear nE,linear E,linear mE(5)QHE?Lo
6、calization?(6)Multi-ferroic?(1)psudo-spin(2)Klien Paradox(3)linear nE,linear E,linear mE(4)Localization?(5)Universal?(6).1.简介:拓扑有序态 新奇量子现象除非破坏性剪断除非破坏性剪断拓扑有序量子态的优点:拓扑有序量子态的优点:1.“0”与与“1”严格区分,严格区分,无微扰过程,不怕干扰、噪声无微扰过程,不怕干扰、噪声 2.与与“奇点奇点”密切相关,密切相关,在边界上会有特殊量子态在边界上会有特殊量子态信息高速公路:信息高速公路:极低电阻、极低能耗极低电阻、极低能耗各行其道,
7、永不混杂各行其道,永不混杂遇到杂质,自动绕行遇到杂质,自动绕行鱼目混杂,杂乱无章鱼目混杂,杂乱无章遇到杂质,会被散射遇到杂质,会被散射普通态普通态拓扑有序态拓扑有序态奇点奇点面包圈面包圈球球过渡过渡1.简介:量子霍尔效应(IQHE)最早认识的拓扑有序态是最早认识的拓扑有序态是-量子霍尔效应量子霍尔效应量子量子Hall效应效应中中间绝缘间绝缘边边界界导电导电朗道能朗道能级级体体态态边缘态边缘态边缘态边缘态1.Very Stable2.No backscattering (Edge state can not localize)问题:问题:1.1.需要强磁场、极低温需要强磁场、极低温2.2.破坏了
8、时间反演对称性破坏了时间反演对称性3.3.只存在于二维系统只存在于二维系统4.4.不是拓扑绝缘体不是拓扑绝缘体 (需要借助于外磁场)(需要借助于外磁场)1.简介:拓扑绝缘体简介(1)基础科学发展:全新的物理概念、现象、效应全新的物理概念、现象、效应 1.新奇量子效应 2.基本物理常数的确定(2)下一代电子技术:革新性的进步革新性的进步 1.准零能耗电子器件:无电阻的“理想导线”2.“电”与“磁”交叉调控,巨大响应 3.能源器件:热电效应、非线性光学 4.拓扑催化 5.核燃料问题:高熔点、高热导(3)国际发展的趋势:是当前国际发展的前沿是当前国际发展的前沿 1.欧美已投入巨资 2.日本正在启动重
9、要性:重要性:1.简介简介:Family of TIs?2D 3DT-broken T-invariant T-invariant T-Broken Kondo QHE QSHE Topological Band Insulator QAHE Anderson Mott.Edge StatesTKNN Z2Chern numberSurface StatesSemi-metalFemi points(in bulk)2.拓扑绝缘体拓扑绝缘体:T-broken vs T-InvariantQSHE in HgTe/CdTe(S.C.Zhang,SCIENCE 2006)QHE2.拓扑绝缘体:Ma
10、terials.Guidelines:1.Semiconductor with inverted band structure 2.Strong SOC+-+-Gap openingdue to SOC“twisted band”困难:Real materials for 3D TI?+-Predictions for Bi2Te3 family:Basic Properties1.Found 70 years ago.Naturwissenschaften,27,133(1939)2.Semi-conductor.Optical Gap 0.2 eV J.Phys.Chem.Solids,2
11、,240(1957)3.One of the best thermoelectic materials.ZT 1 at room T4.Easy to be synthesized5.Whole Family:Bi2Te3,Sb2Te3 Bi2Se3,Sb2Se32.拓扑绝缘体拓扑绝缘体:Bi2Te3,Bi2Se3,Sb2Te3Crystal StructureI Center2.拓扑绝缘体拓扑绝缘体:Bi2Te3,Bi2Se3,Sb2Te3Band Structure Bi2Se31.Only Gamma Point is relavant.2.SOC will invert the ban
12、ds at Gamma.3.Gap is around 0.3 eV.Without SOCWith SOC+-+-ab-initio Surface States:Bi2Se3 has the biggest Gap around 0.3eVH.J.Zhang,et.al.,Nature Phys.(2009)Penetration Depth of Surface state,2nm 2.Materials:Bi2Te3,Bi2Se3,Sb2Te3W.Zhang,et.al.,New J.Phys,12,065013(2010)Chiral Spin texture Y.L.Chen,et
13、.al.SCIENCE(2009)Bi2Te3Y.Xia,et.al.Nature Physics(2009)Bi2Se32.TI Materials:Exp.evidenceARPES-50 meV0 V50 meV100 meV150 meV200 meV250 meV300 meV0.100.150.200.25-0.2-0.10.00.10.20.30.4 Energy(eV)q(A-1)Upper TerraceT.Zhang,et.al.,PRL(2009).2.TI Materials:Exp.evidenceAbsence of back-scattering2.TI mate
14、rials:拓扑绝缘体在压力下的超导态:拓扑绝缘体在压力下的超导态:靳常青,靳常青,PNASPNAS(20112011)孙立玲,等,孙立玲,等,PRB(2011).PRB(2011).Editors SuggestionEditors Suggestion拓扑超导态?拓扑超导态?2.拓扑绝缘体:拓扑绝缘体:最新进展最新进展 磁性拓扑绝缘体磁性拓扑绝缘体-量子化反常量子化反常Hall效应效应量子量子Hall效应效应Quantum Hall stateBEnergykConduction bandValence bandQuantum Anomalous Hall stateMEnergykCon
15、duction bandValence bandQuantum Spin Hall statekConduction bandValence bandEnergyedgeBi2Se3 film doped with Cr or Fe 量子反常量子反常Hall效应效应方忠、戴希等,方忠、戴希等,SCIENCE(2010)无需外加磁场实现量子无需外加磁场实现量子Hall效应!效应!已获得初步实验证实:已获得初步实验证实:何柯,马旭村何柯,马旭村,薛其坤等,薛其坤等,Cr-BiCr-Bi2 2TeTe3 3-Sb-Sb2 2TeTe3 3 film film,arxivarxiv:1108.4754
16、(2011).1108.4754(2011).Crystal Structure:T 417 K,-Ag2Te,anti-fluorite(Fm3m)T ,|S,-1/2 with band-inversiontwo gapless solutions:)()(E22222yxzkkkDMk/0Mkkczz/022Mkkyx2-band effective modelEdge state in kz=0.06 planeBand of bulkEdge stateDistribution along xADCBEdge states and fermi arcs on surface42Edg
17、e states and fermi arcs on surfaceFermi arcs for the(ky,kz)side surfaceFang&Dai,et.al,PRL(2011)43QAHE in the quantum well structureIf we consider the open boundary condition along z direction,and replace kz by,we can evaluate the Hall conductance in the quantum well structure.zi Energy gap at vs.dHa
18、ll conductance vs.dOur Early Proposal:Bi2Se3-doped by Cr,Fe.Science(2010)4.Topological Dirac Semimetal:Weyl Semi-metalSeparated in K2x2 HamiltonianNo T or I symmDirac Semi-metal+Overlapped in K4x4 HamiltonianProtected by crystal SymmNa3Bi,K3Bi,Rb3Bi4.Topological Dirac Semimetal:Marginal Fermi points in Na3Bi,K3Bi,Rb3BiArxiv.org:1202.5636(2012)谢 谢!